[

- INMCINEWS

June/July/August : 1889’ :

BUMPER "We're still around" 1SSUE

=============.=================3==
CONTENTS
Page 1 ... This 1is H:c,t ,,,,, '
Page 2 Chalrman's; f%_,
Page .3 _Long Liye. N&s_
Page & o Lptte&s to ‘the
Page 10 NASEOM Rescue Bid.
Page 11 Print HL in Decimal.
Page 12, ,\agﬁ’Cheﬁﬂsum Regtgh,s. i
Page ™% L AWFEAP;Outpurito Printe 5)
Page 15 , qngersdqn of T4 to NaﬁkSys,’
Page{,]..‘_ﬁ‘.f”;;?, Make L Your | pﬁn Lharacters.
Page 18 - "liMex .Codes/Graphics/Resdrved Words.
Page 19 " Teach Yourself 280,
Page 22 $100-Readers' Replies.
Page 24 Using the PIO.
Page 26 Hardware Reviews.
Nascom /0 Board. .
i Page 28 Port Probe & Key Pads.
: 3M Cassettes..
Page 29 CUTS Cassette Interface.
Page 30 BASIC at 4MHz.
Page 31 Notes on PASCAL. _ . _
Page 32 . Book Reviews. . g~ :-ext ooib m, i
Z80 Books. N
Page 33 . BASIC Books.: iat By T. A bt
C?ésslfied Ads.)
Page 34 . . Doctor Dark's Diary:.~ Fy 1 and sty
Page 36- = - WHAT ?
Page 37 _.Index to INMC Newsletters-il:% 7.
Page 39 : - 'Computers ?
Page LO) Assemblers and Nas+§ys. b TR
Page Ll o "HALT and “the Nascom.
Page 42 Generated BASIC Programs..i.n:
Page LL “Cassette Hints. '
_Cassette Relighility.p. H BN ' SRR
- “Cut That Nolse. :
Page 45 2400 Baud on Nasgom,2... . <. "t
Page 46 =~ ZEAP 1.1 Files to 2.0 Files.
8 Amp PSU - A Warning bLowoopow h
Page 47 i'.. Nas=8ys 3. :
Page 48 Laurence Fights ﬁ%CK L # ; Coan
Page 49 vl Qur very own "IM RSONAL' column.
Pages h3/50/51 Advertlsements.
PLEASE NOTE. Our address Is now: .. S £
INMC80, c/o Oakfield:.Corner, - - =% - Non-members i i{™
Sycamore Road, Amersham, Bucks. HPE 6SU. I o

e

PLEASE ALSO NOTE. This address is used by |chab muréky as a postbox»
. We cannot arrange to send you leaflets or answeri: alll .yﬁurgwsa1es and
" technical queries. Contact NASCOM or your NASCO&*D!stributor for these.

‘HE’ speaks
CHAIRMAN'S BIT

Not so long ago you will have received a letter from us stating
that Nascom had called for a Receiver to handle its affairs. At the
same time the letter said we'd all resigned. Implication: we were all
off to the Bahamas with the INMC funds. Well-sorry, but it's not true,
we are back again, and to prove jt, with a bumper Issue containing
about 10 pages more than usual, ' : :

In the past we have relied on Nascom for secretarial support,
which has been withdrawn on the arrival of the new 'Powetrs That Be'
over at Chesham. However, a friendly Nascom distributor has agreed (at
least temporarily) to give us a home, help us keep the paperwork
straight and deal with programs, subscriptions and distribution. We
won't advertise here (it won't take you long to find out who he is),
but Ta folks.

Now to the INMC itself, we've got to change the name, to . get
round any Jlegal nasties and break. entirely with Nascom, so if you
haven't noticed already, this newsletter is called INMC80 issue 1. You
know and ! know its INMC 8, but that's the way it goes. The '80' stands
for 1980, or 280, or the square root of the number of members, or
something. Cheques payable to INMC80 in future please. Secondly, we
must register ourselves as a charity or a 'Ltd' company pretty shortly,
so we can get the benefit of VAT refunds etc., we "haven't decided which
yet, but if anyone has any vigorous objections to one or the other, or
can offer advice, let us know.

As we mentioned last newsletter, funds aren't quite what they
could be. The cost of newsletter printing and distribution costs rather
more than the annual subscriptions. Hint !!! We had hoped to make up
this deficit with advertising. Where are you ?7? Only two this time,
and we need five pages worth to keep the books in balance. If you are
passing vyour friendly distributor, wave your copy of this newsletter
under his nose and tell him we need his custom (and you'd naturally buy
it if vou saw in OUR pages). In the meantime, our friendly distributor
has agreed to stand any liability we may incur for 12 months, or until
the funds allow us to he totally self supporting {which ever is the
sooner).

There has been some re-organisation of the committee; there
will be an honorary executive committee :consgisting of Chairman,
Secretary/Editor and Treasurer; and an.' editorial committee. All the
existing loonies have ogreed to continue to stand in thelr original
capacities, we will aquire a Nascom representative (for the Inside
information), and we need a Dodo. If you are wondering what a Dodo is,
well if you don't follow every piece of golden prose to be found on
these hallowed pages, then it could be you. No -offence intended, but
the committee needs someone who has little practical understanding of
‘Nascoms and who can argue with the rest of the . editorial committee. His
Job will be to stop us all making this newsletter only readable by the
elite.

Sits. Vac. _ _
One Dodo required. Nascom owner essential (fitted with CUTS [nterface),

§hould have Naspen. Experience required - None (preferable). Must 1ive
In the South East, but committee meetings usually held (evenings) in
North London and no travel expenses offered.

Articles wanted

To keep this newsletter going we need articles, preferably readable and
understandable, on any Nascom related subject. You'll notice from this
issue that we have had another couple of volunteers, but we need more.
The more you put into this thing, the more you will get out of It.

S0 to sum up, the news is; the {NMC still exists, and we intend
(with your help) to make the Newsletters bigger, better and more
informative. But we need more help from distributors (advertising),
committee (one Dodo), and everyone else (articles/reviews/comments).

Dave Hunt

NASCOM IS DEAD - LONG LIVE NASCOM

e A 5 3]

The story so far. Nascom started from humble beginnings in
November 1977, as an offshoot of a semiconductor distributor, Nasco
Ltd. They did well, too well. Expansion requires money for development
and marketing, and money comes from banks and places like that. You try
walking into a bank (any bank) and try to get a loan without either
previous credit history, or on the promise that what vou intend to do
with the money will make the bank's fortune. When you pick yourself up
off the door step, consider Nascom's problem.

Nascom 2 was an expensive exercise, financed by Nascom, but
money to get it into production was provided by the 'city'. Nascom's
return on Nascom 2 was immediately frustrated by component supply
difficulties and instead of making a healthy profit the 'give away 16K
RAM' exercise was born. Their expansion zame to an abrupt stop when the
'city financial institution' decided it was not prepared to continue to
allow Nascom sufficient working capital to continue. Nascom were
presented with no choice but to call in a Receiver. See Guy Kewney's
article on page 42 of July 80 edition of PCW.

What now ? The Receiver is keeping Nascom going until such time
as a buyer is found. He is even getting the Floppy Disk Controller, the
Programmable Character Generator and the Colour Board into production.
We understand that there are a number of potential purchasers in the
offing. The future of Nascom is very much at the mercy of whoever
ultimately buys It, but some predictions can be made. Any purchaser is
unllkely to 'asset strip' as Nascom has few tangible assets to strip,
therefore anyone buying it can only do so with the intention of keeping
it going., However, the purchaser is not committed to produce those
Nascom items still walting to see the light of day. For instance, the
'System 80' box may be restyled and further delaved.

In any event, it seems that Nascom will continue in some form
or other, and whilst the product exists we will do our best to support
it.

Letters

Dear Editor,

- One night, whilst on a recent visit to Ca]iforhia; I happened

to be 1looking for somewhere to sleep. Being particularly hard up, and
it being a fine night, | had a nice comfy packing case in mind. | was

attracted to a pile of boxes full of shredded paper behind a factory
displaying a trade name in the form of a styllzed 'Z' picked out in
blue. | must congratulate the.owners of the factory on the quality of
their shredded paper, as | spent a very comfortable night, and left the
area the following morning thoroughly refreshed. It wasn't until some
time later that | discovered 'The Paper'. It was a single sheet, that
the shredding machine had somehow missed, which must have worked its
way into my pocket as | slept.”Being a thrifty sort, and paper always
coming in useful, ! kept it. ' ‘

- On my return to the UK, |} {naturally).set to, to catch up on my
back. issues of INMC news, and was intrigued by Dr. Dark's 'Search for
the Missing Op-code'. 'The paper' came to mind, as there was something
basically familiar "about 'Tt. Of course !!!! It was one half of a page
from a programming manual, the mnemonics were there, but the shredder
had had the op-codes. | offer the following to Dr. Dark, In the hope
that he can discover the op-codes which go with these very useful
instructions: '

ARN Add and reset.to non-zero LDPB Load, print & blush

BTI Blow trumpet. immediate LDTR Load tape & run away
CCs Chinese character set LDTS Load tape & scramble
CRN Convert to roman numerals MTI Make tape invalid
DAC Divide and conquer NPN No program necessary
DAR Develop address out of range Pl Punch invalid

DM Destroy memory PO Punch operator

DWsS Destroy write protect switch PS Print and smear

EI0 Execute’ invalid op-code RBT Read blank tape

EO Erase operator R n Reset to n

FBJP Float bus and jump ROE Randomize op-code

FSG Fill screen with garbage ROM Read operator's mind
GO Generate own operand RPM Read programmer's mind
HCF Halt and catch fire RT Reduce thruput (Ugh!)
HLP Dial 999 _ SCT Select and chew tape
1A I1T1ogical AND : SD Scramble data

I10R ITlogical OR SIO Scramble 1/0

JPLO Jump on lost operand SML Shift memory left
JPPF Jump on power failure SMR Shift memory right
JSO Jump on sleepy operator TOO Execute operand only
LDBT Load blank tape TPD Triple packed decimal
LDCK Load then clear memory TPN Turn power on

LDDRC Move about, continuous TPO Turn power off

LDID Load invalid data ’ WM ~ Write to monitor

LDNT Load noise tape XOM Execute NOP' & hangup

Regards, Divad Tnuh

With apologies to BYTE.

PARDON *?

Dear Sir,

For some time, rumours have been circulating about the appalling
conditlions in which some Nascoms are expected to work. There have even
been some stories of them being EX-PORTED. How would vou like your ears
cut off, 1 ask vou ?

Yours faithfully,

J.R. Keneally.
Dorset.

BASIC PROGRAM

Dear Sirs,

Please find enclosed a bit of a program that | find fairly useful for
games and graph Jjoining etc. |t 1is for Nascom graphics and joins
together any two points on the screen. It does NOT test for off screen
positions.

I have found that it can speed up quite a Tot of programs which draw
graphs or circles etc using scientiflc functions with larger spacings
than for continuous graphics, bhecause the number of points available
and the definition of Nas graphics is fairiy low anyway.

The second point is a bit of a moan about the Microsoft Basic, which,
as far as | can tell, is only valid on the Nascom implementation. This
is when listing reserved words (graphic characters) within quotes on a
print line and those after a REM statement are printed as their command
equivalents, making it impossible to edit them. | have had to write a
machine 1language routine to 1let me enter them and edit them then
dumping to tape to be read in as lines 1in a program. Not to worry
version 123.4 will no doubt cure it.

A1l the same a magic beastie, now after a floppy from California.
Cheers,
Martin Taylor.

Leconfield.

PRINTER RESTRICTIONS C(CREED 7ED

1

2 . - R L ——

3 .

4., CAN ONLY PRINT COLONS NOT SEMICOLONS
5 o MULTIPLY PRINTS AS .X.

6 . EXPONENT PRINTS AS .XX.

7 . LESS THAN «LE.

8 . MORE THAN «GR.

LIST

65504 REM ++++++tttbbbddbtttbbbdtbbtittttt
65505 REM + VECTORS Me TAYLOR +
65506 REM + X1,Y1 AND X2,Y2 ARE JOINED +
65507 REM + AS TWO GRAPHIC POINTS +

65508 REM + FOR USE WITH NASCOM GRAPHICS +
65509 REM #+++tttdtttdtttttitbrttbbtdtbbtt
65510 IF X1=X2 AND Y1=Y2 THEN RETURN

65511 SETCX1,Y1>: SET(X2,Y2)

65512 DX = ABSCX1=X2)J: DY = ABS(Y1=Y2)
65513 1F DX +LE. DY GOTO 65517

65514 FOR X=0 TO X2=-X1 STEP SGN(X2=-X1>
65515 Y=Y1+CCCY2=Y1)/DXJeXeABS(XDD

65516 SETCX+X1,YJ:NEXT:RETURN

65517 FOR Y=0 TO Y2=Y1 STEP SGNCY2-Y1)
65518 X=X1+CCCX2=X1)/DY . Xs ABSCY)
65519 SETCX,Y+Y1):NEXT:RETURN

oK

Ed: Thanks for the Basic subroutine which is very efficient. You don't
need the outer brackets in Lines 65515 and 65518.

We have come across several minor bugs in the Nascom Basic, but luckily
none of them have any effect on running programs. The bug you mention
is quite annoying, we agree. To be fair to Nascom, this particular bug
is, we think, in the 8080/Z80 Microsoft 8K Basic, and was not added by
Nascom.

MORE ON BASIC

Dear Sir,

1 have enjoved reading the INMC newsletters but would naturally like to
see more items for the Nascom 2. Obviously, you can only do this with
readers help and | profer my contributions below:~-

1. The Nascom suggestion for writing to line 16 is to first write on

line 15 and then transfer this to 1line 16. This does work but gives the
appearance that the program has gone wrong - and we all know our

programs never do that! The following routine writes a string C$

directly to the top line:- '

10 C$ ="THIS IS THE LINE TO WHICH YOU CAN'T WRITE"
20 FOR A = 1 TO LEN (C$)

30 POKE 3017 + A, ASC(MID$(C$,A,1))

L0 NEXT

Working on the assumption that ‘anything POKE can do DOKE can do
guicker' I tried to improve the above, but without success. | found it
necessary first to make LEN(C$) exactly divisible by 2 and then to
format the ASCI| codes of the two characters currently being dealt with
by first reversing them and then converting to a single decimal number.
Having provided the approach to steer well clear of | await suggestions
from my peers.

45 C$ = "DO IT THIS WAY IF YOU'RE DAFT"

50 IF LEN(C$)/2 < > INT(LEN(C$)/2) THEN C$ = C$ + " "
60 FOR A = 1 TO LEN(C$) STEP 2

70 B = ASC(MID$(C$,A+1,1)) * 256 + ASC(MID$(C$,Al))
80 DOKE 3017 + A,B

80 NEXT

Some "1ittle known facts'":

If you have to write a long DATA table or whatever consisting of very
similar 1lines, you can type in the first line and press ENTER, then,
using the cursor control keys, overwrite the 1line number with the
number of the next 1line required and press ENTER, etc, etc. A LIST
command will then show your series of identical lines for editing as
necessary.

When entering a line of the full 48 characters the act of typing the
final character places the cursor on the following line and pressing
ENTER has no effect. It is only necessary, however, to place the cursor
back up on the 1line - at any point - for a ENTER to enter the whole
line.

| have added a Bits & P.C.'s hex pad to my Nascom 2, which works well
for hex and integers but lacks a decimal point. The eventual solution
must be a hardware fix, but my interim solution is a short series of
Nas-Sys instructions which copy out the keyboard table from ROM into
that portion of RAM not accessed by BASIC, switch the values for M.V
and "F" and gives Nas-Sys the address of the new table. Full credit
goes to the writer of Nas-Sys for leaving the door open!

At switch-on:

C 059E 0C80 0060 (Copy out table)
M O0CAE

43 / 0CC6

21 / OCG6F (Switch values)
80 0OC.

After a Reset:
M OCHI
30 0OC

Yours faithfully,

D. Walker.
Windsor.

P10 HELP NEEDED

i ———— = =

Dear INMC,

Could vou include some programming hints on the use of the PI0O on
Nascom 1 in some future issue ? One useful example would be a traffic
lights program driving a LED display via the P10. There is a lot of

interest in Nascoms in Bradford College where | teach. Hopefully we

will equip an MPU workshop with Nascoms (if cuts permit) for teachlng
MPU applications.

Can you recommend a book on interfacing MPU's to external equipment ?
Something on the lines of a tutor text would be ideal.

Yours faithfully,

P. Nurse.
Bradford.

Ed: We put several articles on the PIO in issue 6, but a short article
describing the software and hardware needed to control a row of LED's
should be easy to find. Please will an INMC member send one in, and can
anyone help on suggestions for books describing Interfacing that are
simple to understand ? :

MASTERMIND MODS

Dear INMC,

I'm sure a lot of vou and other Nascom owners have tried the Mastermind
game by D. Ritchie, which you have featured in the mag. This is one of
the best games around, the Nascom usually beats me, but the only let
down in the program is the poor random number selection for the
'computers guess', which after a few goes in predictable, 0123, 5567,
3455, typlical of its guess's. | feel this is due to the simple use of
YED 5F', location 0C9F. | have worked out a simple random number
generator which works a 1ot better, using the rnd. no. generator of
'B-Bug'. (What's B-Bug ? -Ed.)

The modifications are:

0CcaD 06 04 LD B, 04

0C9F E5 PUSH HL

gCAQ 21 BO 0C LD HL, 0CBO (workspace)

0CA3 3E 07 LD A, 07 (max. no.)

0CAS CD 7A 0L Call B-Bug Rnd. No.

0CAS8 E1l PGP HL

0CA9 77 LD (HL),A

0CAA 23 INC HL

0CAB 10 F2 DJUNZ 0C9F (repeat for 4 nos.)
OCAD c9 RET

Have a go, and | think you'll find it's better.
Yours faithfully,

G. Benson
Lichfield.

DOCUTEMNATION ERUR

Dear Sir,

!l am a recent member of INMC having just bullt myself a NASCOM 2. The
following may possibly be of interest to vour readers.

There is a misprint on page 9 of the 8K BASIC Software manual 1in the
NASCOM 2 documentation. tn fact, this version of BA31C does NOT support
user defined functions with more than one arguement. Thus, DEF
FNAVE(V,W) = (V+W)/2 is not valid, although the other example given is
of course single and OK.

| hope that this information may be of use to others !
Yours faithfully,
H.J.J. Berridge.

Crowthorpe.

USR SUBROUTINES

Dear Sirs,

Many thanks for your excellent newsletter. | used the machine code
subroutine for 8K Basic as in vour lIssue 4, and 1o & behoid, ?FC error.
The fault was mine, not yours; Iin case it is useful to others | will

expltain what | should have read in the manual.

Before a USR is used, the address of the subroutine to be called must
be poked Iinto a 2-byte location known as USRLOC. For those of us with
the tape Basic, assembled at 1000H to 2FFFH, that location is 3004 & 5H
(decimal 12292 & 3).

Simitlarly the address of the routine which sets the value to be
returned as USR() as the current contents of the A & B registers in
100A & BH for Tape Basic users.

A useful feature which could easily be incorporated in Basic, but is
not available in any version | know of, would be to allow variables to
be in Hexadecimal. This would make POKE-ing & DOKE-ing much simpler. |
enclose a pair of subroutines in Basic for the library, to simplify it,
but machine code subroutines accessing the Data statements would be
much more efficient in time and space. If only the folk who write
interpreters would give us the source code.

I look forward to seeing some programs in your organ of more use or
interest than games.

Yours faithfully,

Robert Edlin.
Nottingham.

-10-

Rescue Bid

This letter was received recently by the INMC. We understand
that similar letters have been received by dealers and individuals. We
reprint the letter here, but think that the INMC must remain strictly
neutral.

3, Bishopstone Close,
Golden Valley,

NASCOM RESCUE BID Cheltenham,

TS osroooomaam s Glos.
GL51 0uUD.

14th June 1980
Dear INMC Member,

You are probably aware that Nascom Microcomputers 1is in the
hands of a receiver who is preparing to sell the company in order to
satisfy a financial Institution who has recalled a loan.

If the company is sold into the hands of competitors it will
certainly closed down by them and the assets stripped.

YOU CAN HELP to save Nascom from extinction.

This is a viable British company with excellent products and
more on the way. They have a temporary cashflow problem and just need
help to get over the hump and on their way. They are not bankrupt.

A1l that is required is the formation of a 'rescue company' to
buy Nascom from the receiver. This company would own Nascom and provide
the neccesary finance to allow them to function successfully.

The 'rescue company' would obtain its capital by the issue of
shares of 50 pence with a minimum shareholding of 10.00. Larger
shareholdings would be permitted, and are of course desirable. However,
the minimum holding of 20 shares would permit those with 1imited funds
to participate as well as the more affluent. There are about 20,000
Nascom owners and 32 distributors. It is in the Interests of all of us
to ensure that Nascom survives.

The Receiver thinks my proposal viable and has given me a copy
of the sale proposals and relevant accounts.

In order that | may assess the amount of support would vou
please complete the attached slip and send it to me with a stamped self
addressed envelope. This will enable me to send you further news of the
progress of the rescue operation.

Yours sincerely,

J. G. Margetts INMC Member.

T Y T T YT - T - 1 i -

Nascom Rescue Bid

| would/would not support the rescue bid.
| would probably spare to buy shares.
Signed ...t Ceee e Date voivecanssansnnan

NOTE: Completing this slip does not commit you in any way.
Do not forget to enclose a self addressed envelope with this slip.

-11-

Machine Code

PRINT HL IN DECIMAL J. Addey/R. Beal

Mr. J. Addey has sent us a wuseful subroutine which prints HL in
decimal. We have modified it for Nascom/Nas-Sys, and have also saved
quite a few bytes by tidying it up and converting to full use of the
Z80. Here it is complete with a little program which demonstrates the
use of several Nas-Sys routines. Run the program at 0DOOH and type in a
value 1in HEXadecimal. Errors are trapped. This program is a good
starting point for beginners to analyse.

ZEAP Z80 Assembler - Source Listing

0010 ; DEMONSTRATION PROGRAM

0Doo 0020 DEMO ORG 0DOOH

0D00 0063 0030 ZINLIN EQU ©63H

0D00 0079 0040 ZRLIN EQU 79H

0Doo 0068 0050 ZERRM EQU &BH

0DO0 0060 0060 ZARGS EQU G60H

0D00 006A 0070 ZCRLF EQU BAH

0D00 0COB 0080 ARGN EQU O0COBH

0DO0 DFGB3 0090 SCAL ZINLIN ; Get the input 1ine

0D02 DF79 0100 SCAL ZRLIN ; Get the values from the line
0D0L 3004 0110 JR NC, CHK ; Check the values are 0k
0D06 DFBB 0120 ERR SCAL ZERRM ; Error message

0D08 18F6 0130 JR DEMO

0DOA 3A0BOC 0140 CHK LD A, (ARGN) ; Check one value only entered
0D0D FED1 0150 CP 1

ODOF 20F5 0160 JR NZ, ERR

0D11 DF60 0170 PRT SCAL ZARGS ; Get the value in HL
0D13 CD1AOD 0180 CALL DECSKHL ; Call print routine
0D16 DFBA 0190 SCAL ZCRLF ; Move to next line
0D18 18EG 0200 JR DEMO ; Start again

0220 ; Routine to print HL in decimal
0230 ; Set HL to the value and call the routine
0240 ; AF, DE, and C registers are modified

0D1A 0030 0250 ROUT EQU 30H

O0D1A 111027 0260 DECSHL LD DE, 2710H ; 10,000 decimal
0D1D CD350D 0270 CALL SUBR

0D20 11E803 0280 DEC4LHL LD DE, O3E8H ; 1,000 decimal
0D23 CD350D 0290 CALL SUBR

0D26 116400 0300 DEC3HL LD DE, 0064H ; 100 decimal
0D29 CD350D 0310 CALL SUBR

0D2C 110A00 0320 DEC2HL LD DE, O00AH ; 10 decimal
0D2f CD350D 0330 CALL SUBR

0D32 110100 0340 DEC1HL LD DE, 0001H ; 1 decimal
0D35 QEOD 0350 SUBR LD C, 0 ; Count subtractions
0D37 0OC 0360 SUB2 INC C

0D38 B7 0370 OR A

0D39 ED5G2 0380 SBC HL,DE

O0D3B 30FA 0390 JR NC, SUB2

0D3D 0D 0400 DEC C

OD3E 19 0410 ADD HL, DE

0D3F 3E30 0420 LD A, 30H ; Convert to ASCHI
0D41 81 0L30 ADD A, C

ob4s2 F7 0Lu0 RST ROUT ; Output answer

obu3 C9 0450 RET

-12-

CHECKSUM ROUTINES

The following assembier programs submitted by David Wadham are
to enable 16 bit checksums to be accumulated for any length program.
This is a useful feature and we may well use it in future for published
programs, allowing members to verify that programs have been typed in
correctly. Also note the economy of the listing when written for
Nas-Sys using Nas~sys internal routines.

ZEAP Z80 Assembler

Source Listing

0010 ; MEMORY BLOCK 16 BIT CHECKSUM : V2.1
0020 ; for NASBUG T2 or T4

0050 ; Execute: (BUGSUM) XXXX YYYY

0060 ; where: (BUGSUM) = location of program
0070 ; XXXX = start of memory block,
0080 ; YYYY = length of memory block
0090 ; (all values are hexadecimal}.

0110 ; The result is:

0120 ; AAAA SSSS;

0130 ; where: AAAA = address of last byte,
o1z0 ; §5S5=16 bit checksum (any

0150 ; carries beyond this are discarded)
0160 ; Program then returns to the monitor.
0180 ; Program is fully relocatable (and

0190 ; may run in ROM).

0D00 0210 ORG O0DOOH

0D00 OCOE 0220 ARG?2 EQU O0COEH

0D00 0C1l0 0230 ARG3 EQU 0C10H

0D00 0232 0240 TBCD3 EQU 0232H

0D00 0240 0250 CRLF EQU 0240H

0D00 0359 0260 STRTO EQU 0359H

0D00 2A0EOQC 0270 BUGSUM LD HL, (ARG2); Get the

0D03 ED4LB10OOC 0280 LD BC, (ARG3); arguments. .
0D07 110000 0290 LD DE, 0; Clear D & pushed sum store.
0DOA D5 0300 PUSH DE

0DOB 5E 0310 LOOP LD E, (HL); Get current value.

0DOC E3 0320 EX (SP),HL

opoD 19 0330 ADD HL,DE; Add value to

ODOE E3 0340 EX (SP),HL; pushed sum store.

ODOF 23 0350 INC HL; To next location.

g¢D10 OB 0360 DEC BC; Decrement counter.

oD11 78 0370 LD A,B

0D12 B1 0380 OR C; set /reset flag

0D13 20F6 0390 JR NZ LOOP

0D15 2B 0400 DEC HL; Back to last byte.

0D16 CD3202 0410 CALL TBCD3; Display last address.

0D19 E1 0420 POP HL; Get checksum.

O0DIA CD3202 0430 CALL TBCD3; Display it.

0D1D CD4002 0440 CALL CRLF; New Line.

0D20 31330C 0450 LD SP, DOC33H; Set Nasbus stack pointer.
.0D23 C35903 0460 JP STRTO; Back into Nasbus.

0470 ; END

ZEAP Z80 Assembler

0Do0

0D00 0060
0D00 006C
0D0O0 005B
0D00 DF60
0D02 EB
0D03 110000
0bG6 D5
0b07 5E
0D08 E3
0D09 19
0DOA E3
0DOB 23
0DoC 0B
0DOD 78
0DOE Bl
ODOF 20F6
0D11 2B
0D12 D1
0D13 DF6C
0D15 DF5B

Object code:

0010
0020

0050
0060
0070
0080
6090

0110
0120
0130
0140
0150
0160
0170

0190
0200

0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430

NASBUG version

>T 0D00 OD27
0D00 2A O
0D0g 00 00
0D10 OB 78
0D18 02 E1
0D20 31 33

0C ED
D5 5E
Bl 20
CD 32
0C C3

AT

wE e e Ny e

wd e e %Nr Wy e B

~e

ZA
T
M
CH

LO

.
’,

LB
E3
F6
02
59

-] 3

Source Listing

; MEMORY BLOCK 16 BIT CHECKSUM : V].1

for Nas-Sys

Execute: (CHKSUM) XXXX YYYY

where: (CHKSUM) = location of program
XXXX = start of memory block,
YYYY = length of memory block

(all values are hexadecimal).

The result is:
AAAA SSSS NAS-SYS 1;
where: AAAA = address of last byte,
$8S8=16 hit checksum (any
carries beyond this are discarded)
and: NAS-SYS 1 indicates that the
program has returned to the monitor.

Program is fully relocatable (and
may run in ROM).

ORG O0ODOOH

RGS EQU 60H

X1 EQU 6CH

RET EQU 5BH

KSUM SCAL ZARGS ; Get the arguments.
EX DE,HL ; Mem pointer into HL
LD DE, 0; Clear D & pushed sum store.
PUSH DE

oP LD E, (HL); Get current value.
EX (SP),HL
ADD HL,DE; Add value to
EX (SP),HL; pushed sum store.

INC HL:; To next location.

DEC BC; Decrement counter.
Lb A,B

OR C; Set /reset Z flag

JR NZ LOOP

DEC HL; Back to last byte.
POP DE:; Get checksum.

SCAL ZTX1 : Display HL & DE
SCAL ZMRET; Return to NAS-SYS

END
Nas-Sys version
T 0D0O0 0D17
10 0C 11 0oDO0 DF 60 EB 11 00 00 D5 5E
19 E3 23 0D08 E3 19 E3 23 0B 78 Bl 20
2B CD 32 0D10 F6 2B D1 DF 6C DF 5B 00
CD 40 02
03 00 00

-14-

ZEAP O/P

ZEAP OUTPUT TO PRINTER/'TELETYPE' by R. Beal

Mr. J. Addey has written to the INMC saying:-

""We bought ZEAP some time ago hoping to use it on our NASCOM 1 which is
exclusively wused 1in conjunction with an ASR 'teletype'. End of story.
No-one from NASCOM can offer any advice as to how ZEAP may be used
except by using the original keyboard + VDU O/P."

Here are the answers for both ZEAP 1 and ZEAP 2.

The address of the output routine is located at OF22-0F23, so cold
start ZEAP, then return to the monitor, then alter this address to your
own routine and then warm start ZEAP. When you use ZEAP, only output
from the U command (=1ist to UART) and assembler output with option 04
on (TTY option) will be output to the TTY. This is extremely useful as
updates to text are carried out using the Nascom keyboard and VDU,
command 04 is entered and then the A command, for hard copy listing.

If you are simply using a serial ASCI! printer, there is no need to
change the address at 0F22-0F23 because the default is to send the data
to the UART in any case. Read pages 43 and 49 of the ZEAP 1 manual
where it is explained very clearly. If you are using a parallel printer
(or serial device) which require special print handling routines, then
this pointer must be changed to direct data to the output handling
routine.

The comments above for ZEAP 1 apply also to ZEAP 2, except that the
address of the output routine 1is at OF05-0F06. See appendix E, and
appendix G, as well as the description of the U command, all clearly
set out in the ZEAP 2 manual.

You may wish to use an external kevyboard for input. ZEAP does nothing
special when it gets an input character, so you can activate a teletype
keyboard as described in the Nas-Sys manual under the X command. (Enter
X0.) This also works with the T4 monitor, and applies to ZEAP 1 and
ZEAP 2. If you are still back in the dark ages with T2 then bad 1uck,
you can't do it without writing a special program. Using the X command
will not in this case affect output, as ZEAP itself takes control of
where the output is to go to.

=15~

All Change

CONVERSION TO NAS-SYS BY RICHARD BEAL

EEETESRSSSSSSESSSm==cos

Many readers have requested a table showing equivalent codes
for old monitors and for Nas-Sys. Many new [{NMC members have only ever
used Nas-Sys, and have come across old programs they wish to convert.
Derek Brough has made a tremendous effort in converting the Tk library
to Nas-Sys, so you will find it easier to get some of these programs
from the new Nas-Sys machine code program library. _

To keep the table simple we have compared Th to Nas-Sys. The
older T2 and B-Bug monitors were subsets of Tk, so the conversion works
in the same way for them. It is not possible to show every detail
because there are so many small differences, in particular the method
of input and output.

Name Function performed Th Nas~Sys
RIN Get Input character cCDh 3E 00 CF
ROUT Qutput a character CD 4A 0C F7

or F7

or CD 3B 01
PRS Print a string EF ...00 EF...0Q0
RCAL Relative call D7 .. D7 ..
SCAL Subroutine call ~NONE DF ..
RDEL Delay FF FF

or CD 35 00
BRKPT Breakpoint E7 E7
START Reset computer c7 C7
MRET Return to montior C3 86 02 DF 5B

or CF
TDEL Long delay NONE DF 5D
FFLP Flip bits in port 0 CA 4A 00 DF SE
MFLP Flip tape drive LED CD 51 00 DF 5F
ARGS Load arguments cD 97 06 PF 60
IN Scan for input CD 4D 0C DF 62

character or CD 69 00
INLIN Obtain input line NONE DF 63
NUM Convert from ASCII to CD RA 02 DF 64
binary

TBCD3 Qutput HL in ASCI!! cD 32 02 DF 66
TBCD2 Output A in ASCI/| CD 2B 02 DF §7
B2HEX Output A in ASCIHI CD &4 02 DF 68
SPACE Qutput space Cb 3C 02 ‘DF 69
CRLF Qutput carriage return CD 40 02 DF BA
ERRM Output error message NONE DF 6B
TX1 OQutput HL,DE in ASCIi CD 5B 04 DF 6C

SOuUT String of characters CD CC 06 DF 6D
to serial output

SRLX Character to serial CD 5D 00 DF 6F
output or CD 5E 00

RLIN Get arguments from NONE DF 79
input line

BIHEX Qutput half of A in CD 4D 02 DF 7A
ASCIHI

BLINK Blink cursor, get input NONE DF 7B

CPOS Find start of line NONE DF 7C

-16-

[|
[7

Lw)
|| I]

The advent of the Nascom 2, with 1Its graphics ability, the
Econographics add-on kit giving similar facilites to the Nascom 1, and
the much awaited and (as far as we know) imminent Programmable
Character Generator, has made investigation into how the characters are
formed on your monitor screen appropriate. The fact that the Nascom 2
and the Econographics both use a 2716 compatible ROM as the character
generator, coupled with the new breed of cheap 2716 EPROM programmers
means that character sets of vour own are very easily prepared.

We don't intend to discuss in detail exactly how the characters
are sent to your screen, but to concentrate on the organisation of the
character generator ROM (or in the case of the PCG, RAM). First, the
ROM is a 2K device, hence has 11 address lines. Essentially what
happens is that the hardware scans the video RAM which in turn produces
48 sequential addresses representing the 48 characters to be displayved
on that row. 7 address lines are used for this, known as the Character
Selects (CSO - 6). Each address is applied to the character ROM causing
a data byte to be output from the character ROM which is latched into a
Y“arallel in/serial out' shift register, and a clock shifts the data
byte out bit by bit producing a pattern of 1s and 0s which represent
white and black dots (respectively) on the screen. A row of characters
is actually composed of 16 TV lines (1% on a Nascom 2, but it only
skips that last two), and the remaining 4 address lines, known as the
Row Selects (RSO - 3), tell the character ROM which TV 1ine it 1is on.
Enough of this, it takes a fair amount of study of the circuits to
understand it properly, and it's not really Important to the matter of
programming a character set.

The important things are that a character is represented by 16
rows of 8 dots each. Each dot 1Is one bit of a byte, so that the
character can be represented by a total of 16 bytes. As there are 128
characters in a character ROM, each of 16 bytes, then the ROM must be a
2K device, Its not difficult to program a 2716 to make a special
graphics EPROM, so all that remains Is to find out how to program a
character.

So to designing a special character. Take a piece of 0.1" or
2Zmm graph paper, and mark off a rectangle 8 squares wide by 16 sguares
deep. Qutline your character within the rectangie in pencil, then shade
in the squares that your outline passes through. Stand back and examine
the character from a distance to see if it looks right. If so then code
the 16 bytes used, remember that a binary 0 is black, a binary 1 is
white. (Don't forget your monitor displays white on black.) See the
attached diagram of a letter 'A'. Note that in this instance the right
hand column is left blank to allow for a space between characters, if
characters were to be joined together, then no blank is required. The
code for an 'A' lis:

38 L4 82 82 FE 82 82 82

82 00 00 00 00 00 00 0O
Notice the <character s slightly broader than it will appear on the
screen, due to the non-svmetrical aspect ratio of the monitor screen.
Any <character may be bullt up in a similar fashion. Hence the evil
looking 'Space Invader'! on the right is built up of three characters as
follows:

00 00 00 03 07 OE OF 1F

1F 1C 18 10 08 04 02 00

T e

-17~

18 7E FF BD 3C 3C FF E7
C3 7E BC 18 18 OF 00 00 ‘

00 00 00 CO EO 70 FO F8

F& 38 18 08 10 20 40 00
Each s a discrete character, which when displayed together on the
screen form a complete 'lnvader'.

+ [+ ddr i gdd = EY)
u [é1ddd) ed * LA +
I rYrryIw] F] ¥
| ddpdd d 5 42
Frviatreg = FE
IEX T XY AN £ £
146 dda i ¢ ' t{
1 dddgur f = s
XL AR . &1
ddogdddé * [
ddgdcdess 5 #P
dladddep = 83
Cisjdpdd 3 b4
adffagca s L
HHH AT
+ + e +
+ + ﬂ’idi‘}d : da + I sSppiipgpp » | & + I Fhdopopeg + &d
dboddaasp = #p Frers s o W Propoo el T b4
desopogs = o 111yt © §F Fevoeoreg = o4
ghdpdpdrr 5 43 LI SR BRIV SR X 3 tiodopoms = cd
ploppi vy = #% LE AN F . LV 1#0p@e = E¢
t*¢f1cl¢ L N 1 o @p 2 3 Fltlpgpopwe ¢ 3P
dddpiaty 12 pE vyt ot & FF 1111 #Fppy = Fp
[N] B W F [N R T EWR 11l 1 p8g = Fg&
eFPr it v A F v wEpwLL oz €3 tit 11t dpa = Fo
-Ad & oa o oo d [' &~ L e a0 A b - A o - 2 &
Pddr 1 #ge = T & LI e B L Ao B gy = 1§
dodr1Jydy = 1 4 FEPY DN LE Fo ¥ wyw 2 e
| dbpBLypo = #9 L BRI FHFagry = 1 #
| dosanipd r &4 ARp FEBEPY = soippewre & 24
n geoepepr p * @z prredprd pp Gl RHAREY = kO
+ _+_ aPdppnts Tt ¢gp _I_ + FepsEEEE = PP + + Popippog + OF

$o having discovered how a character is built up, how 1is it
organised in the ROM ? The first thing to realise that a ROM is an
Independant device, the first byte 1in the ROM 1is address 000H,
regardless of where the ROM may sit in a memory map. The first byte of
the first character starts at address 000H and the character takes wup
16 (10H) bytes. The second character therefore starts at address 010H,
the third at 020H, etc., the last character starts at address 7FOH.
Simple really. Now another sneaky trick. Conslider the alpha-numeric
character generator, notice that the character numbers are 00, 01, 02,
etc. Well relate that to the addresses in the ROM, Character 00 starts
at address 000H, character 01 starts at address 010H, 02 at 020H etc.
See the pattern ? The character number is the same as the address with
the least stgnificant '0' missing. Not difficult. Now the graphics
characters start at character number 80. So all you have to do to find
your new character in vour new graphics ROM is to start counting at 80
instead of 00,

The characters must first be programmed into RAM, and as the
graphics start at 80, a convenient place to start is an X800H memory
boundary, that way you can Kkeep track of the character addresses
without mental arithmetic to add 80 to each character number. You don't
have to program all 128 characters at once, but leave all unprogrammed
bytes at FFH, that way vyou can 'over program' later. With all the
characters in RAM, make a tape of them, and then blow the EPROM. At
long last It can be salid that Nascom owners are going dotty !!!!

~-18~

HEX~? f

Reserved Words, and Graphics BS 181 Gr/5 = < 1
TS IESFARSSSIdESaRESSESAoc o= BB 182 Gr/B = SGN f
B7 183 Gr/7 = INT r
The Hex codes for the reserved words BS 184 Gr/8 = ABS ‘
and graphics are tabulated below. It is rather B9 185 Gr/9 = USR :
unfortunate that the results LISTed Ffor the BA 186 Gr/: - FRE
last U8 graphics, where there are no resarved BB 187 Gr/; = INP
words, are in many cases beyond the scope of BC 188 Gr/Sh/, = POS
the printer. Where an unprintable character is BD 1389 Gr/Sh/- = SQR
encountered, a '.'" is subsituted. We suggest BE 190 Gr/Sh/. = RND
that users complete this table for themselves, BF 181 Gr/sh// = LOG
typing in a Basic line using the combhination co 192 Gr/Sh/@ = EXP ;
of keys given, then LISTing the results. This c1l 193 Gr/A = cos f
list of graphics, reserved words and Kkeys c2 194 Gr/B = SN t
required should be used In conjunctlion with c3 135 Gr/C = TAN
the graphics list on page 10 of INMC 7. ch4 195 Gr/D = ATN
The key to the keys used Is: cs 197 Gr/E = PEEK
Gr = GRAPH, €t = CTRL, Sh = SHIFT B 198 Gr/F = DEEK
The keys should be depressed in the order c7 199 Gr/G = POINT :
listed. cs 200 Gr/H = LEN
co 201 Gr/1 = STR$:
HEX CHR$ Keys Reserved word CA 202 Gr/J = VAL
CB 203 Gr/K = ASC
80 123 Gr/Ct/Sh/@ = END cC 204 . Gr/L = CHRS
81 129 Gr/Ct/A = FOR cD 208 Gr/M = LEFTS
82 130 Gr/Ct/B = NEXT CE 206 Gr/N = RIGHY §
83 131 Gr/ct/C = DATA CF 207 Gr/0 = MID$
84 132 Gr/Ct/D - INPUT End of list of reserved words
85 133 Gr/Ct/E = DIM (]4] 208 Gr/? = r :
86 134 Gr/Ct/F = READ bl 209 Gr/Q = hy i
87 135 Gr/Ct/G = LET D2 210 Gr/R = g |
&8 136 Gr/Ce/H = GOTO D3 211 Gr/S = v i
89 137 Gr/Ct/1 = RUN P4 212 Gr/T = 1p
8A 138 Gr/Ct/d = 1F h] 213 Gr/U = J
8B 139 Gr/Ct/K = RESTORE ne 214 Gr/v = .
ac 140 Gr/Ct/L = GOsuB b7 218 Gr/W = k(
8D 141 Gr/Ct/M = RETURN D8 216 Gr/X = o,
8E 142 Gr/Ct/N = REM D9 217 Gr/Y = 1
8F 143 Gr/Ct/0 = STOP DA 218 Gr/Z = .
a0 14k Gr/Ct/P = QUT DB 219 Gr/[= g
91 145 Gr/Ct/Q = ON alud 220 Gr/Sh/| = I
92 146 Gr/Ct/R = NULL DD 221 Gr/} = i
93 157 Gr/Ct/S = WAILIT DE 222 Gr/Sh/0 = .
aL lag Gr/Ct/T = DEF DF 223 Gr/Sh/) = iF
a5 149 Gr/Ct/U = POKE EQ 224 Gr/Ct/Sh/space = h.
96 150 Gr/Ct/v = DOKE El 225 Gr/Sh/A = K |
97 151 Gr/Ct/W = SCREEN E2 226 Gr/Sh/B = ir
ag 152 Gr/Ct/X = LINES E3 227 Gr/Sh/C = ip
99 153 Gr/Ct/Y = CLs El 228 Gr/Sh/D = hM
94 154 Gr/Ct/Z = WIDTH ES 229 Gr/sSh/E = t
9B 155 Gr/Ct/][= MONITOR . ES 230 Gr/Sh/F = a
9c 158 Gr/Ct/Sh/{ = SET E7 231 Gr/Sh/G = J
ithy} 157 Gr/Ct/] = RESET E8 232 Gr/Sh/H = 1
SE 158 Gr/Ct/Sh/0 o PRINT E9 233 Gr/Sh/1 = hs
9F 159 Gr/Ct/sh/} = CONT EA 234 Gr/Sh/J = t.
A0 160 Gr/space = LIST EB 235 Gr/sh/K = q
Al 161 Gr/3h/1 = CLEAR EC 236 Gr/Sh/L = *
A2 162 Gr/Sh/2 = CLOAD ED 237 Gr/Sh/M = u
A3 163 Gr/sSh/3 L] CSAVE EE 238 Gr/Sh/N = G
Al 164 Gr/Sh/b = NEW EF 239 Gr/Sh/0 - .
A5 165 Gr/sh/s = TAB(Fo 240 Gr/Sh/P - f
A6 1686 Gr/Sh/6 - T0 F1 241 Gr/sh/qQ = .
A7 167 Gr/Sh/7 = FN F2 242 Gr/sh/R = -
Ag 168 Gr/Sh/38 = SPCY(F3 253 Gr/Sh/S = ;
A9 169 Gr/Sh/9 = THEN Fi 2h4 Gr/Sh/T = .
AA 170 Gr/Sh/: = NOT F5 245 Gr/Sh/uU = .
AB 171 Gr/Sh/; = STOF F6 246 Gr/Sh/V = %
AC 172 Gr/Sh/, = + F7 247 Gr/Sh/W = .
AD 173 Gr/~ = - F3 248 Gr/Sh/X = "
AE 174 Gr/. = * 9 249 Gr/Sh/Y = T.W.#
AF 175 Gr// = 7/ FA 250 Gr/Sh/Z - k
BO 176 Gr/0 = t FB 251 Gr/Ct/; = .
Bl 177 Gr/l = AND FC 252 Gr/Ct/Sh/, = h
B2 178 Gr/2 = CR FD 253 - Gr/Ct/Sh/= = .
B3 179 Gr/3 a > FE 254 Gr/Ct/Sh/. = f
By 180 Gr/b = = FF 255 Gr/Ct/Sh// = J

-19~-

Z80 made simple
THE KIDPIES' GUIDE TO Z80 ASSEMBLER PROGRAMMING. P. R. Hunt

Part: The First (and if doesn't go down too well, Part: The lLast).

Funny numbers, counting with sixteen fingers, and all that.

-3 ¥ 1553 483 4 3 4 RS 038 i i a2 R R R

We have had many appeals for a beginner's guide to Z80
assembler programming, and as no-one else volunteered, | thought |
might have a go. After all, my gqualifications for this task are
impressive.

1) Three years ago | knew nothing about it.

2) It is arguable if | have 'earned much in the meantime,.

3) ! don't mind making myself look an idiot in print (in the eyes of
of the enlightened).

A1l this means is that I'm not too clever at it to baffle the reader,
and that I 'm new enough at it remember the diffliculties | had at first.

So here goes: The first thing to 1learn 1is HEXadecimal, the
numbering system used when writing machine c¢ode. HEX numbers are
usually indicated by numbers either being prefixed '#', or suffixed
"TH', Now to use HEX effectively, really means that you should grow
three more fingers on each hand, as this is a little difficult for most
normal people, an explanation will have to suffice.

Binary and HEXadecimal

Er R TR EERREEES S S S S S ESEEE

Most of us count in units of 1, 10, 100, etc. For historical
reasons we need not discuss, thls counting in 10s business (known as
"hase 10' counting or Decimal) is so much second nature that counting
in any other form may well seem ludicrous. However, there are other
things on this earth which do use different systems, and computers
figure largely among them. Right at the heart of it, the computer uses
the Binary system, and all it knows is that a number represented as 'no
volts' will be interpreted as a '0', whilst a number represented by
'some volts' will be interpreted as '1'. From this it can be seen that
the computer counts in twos (known as 'base 2' counting or Binary). In
the same way that we count in 1ls, 10s, 100s, etc, the computer counts
in 1s, 10s, 100s etc. Unfortunately, although the numbers JTook the
same, they are in fact different. As each wunit is the base number
raised to next power (mathematically speaking) they actually mean:

We think Computers think

10 to the power 0 =1 2 to the power 0 = 1 (= 1 Decimal)
10 to the power 1 = 10 2 to the power 1 = 10 (= 2 Decimal)
10 to the power 2 = 100 2 to the power 2 = 100 (= 4 Decimal)
10 to the power 3 = 1000 2 to the power 3 = 1000 (= 8 Decimal)

etc.

So that the number fifteen (Decimal) is expressed as:

-20~

1000 (8 in Decimal)

100 (4 in Pecimal)

10 {2 In Decimal)

1 (1 in Decimal)
1111 (= 15 in Decimal)

Pon't forget when adding Binary numbers that 1 + 1 = 0, carry 1, and
not 2, as it would in Decimal.

Now what has all this got to do with HEX ? Well, that answer is
managability. |f we take a Decimal number, say ten, then we write '10'.
!f want to express the same amount in Binary, then it becomes the
cumbersome '1010', worse, if we write one thousand three hundred and
twelve, we write 1312 in Decimal, in Binary this becomes the forbidding
figure '1010010000'. You can see that even with fairly modest Decimal
figures, the Binary equivalents are getting unmanagable. The Z80
processor has an addressing capactity of 65535 bytes, which in Binary
becomes the incredible '1111111111111111', which is difficult to read
yet alone assimilate the actual number. To answer the question at the
beginning of the paragraph, we've got to find some more convenient way
of expressing the Binary digits, or the whole thing beccmes impossible
from the start. Thats where HEX comes in, but to understand that, we've
got to go through the knotty business of Binary to HEX and Decimal to
HEX conversions.

Having established that other 'bases' may be used apart from
'base 10', 16 could be used as a base, in fact that is what HEXadecimal
means, counting in sixteens. A second thing to realise 1is that when
counting to 'base 2' we only need two characters. 0 and 1; counting in
'base 10' requires ten characters, 0 1 2 3 4 56 7 8 9; it therefore
follows if we are to count {in sixteens, sixteen characters are
required. These are:
01234567 89ABCHDETF
The third thing to notice is that 16 is the fourth power of 2, and we
can make use of that to make simple conversions. We do it by mentally
converting a Binary number to Decimal then converting the Decimal to
HEX. A messy process, and one that is soon forgotten when you get
familiar with HEX. So think of a Binary number, say 11101101110, now
split it into groups of four, starting with the right hand end, thus,
111 0110 1110, add a '0' to the left hand end to complete the last
group of four, and we get 0111 0110 1110. Now notice that the maximum
Decimal number in any group is 15, and with a 1little practice, the
convertion becomes dead easy, like this:

0111 0110 1110
7 6 14

Now cheat and look at the first (right hand) column in the next
paragraph. Look up the Decimal number, and write down the equivalents.
So:

0111 0110 1110
7 6 14
7 6 E

-21-

our Binary number 11101101110 becomes a nice managable 76EH. As there
are only six letters to learn to replace the Decimal numbers 10 - 15, a
little practice will soon dispense with the intermediate Decimal stage,
and you can do Binary to HEX conversions direct. (To tell the truth |
still have difficulty doing it backwards, and end up jotting down a
Binary table from 10 - 16.)

) Decimal to HEX is easiest achieved using a conversions table
w;;tten In powers of 16, expressed in 'base 10'. The table looks 1like
this:

HEXADECIMAL COLUMNS

b 3 2 1
0 0 0 0 0 0 0 0
1 4,096 1 256 1 16 1 1
2 8,192 2 512 2 32 2 2
3 12,288 3 768 3 L8 3 3
4L 16,384 L 1,024 b 6L b il
5 20,480 5 1,280 5 80 5 5
6 24,576 & 1,536 6 96 6 6
7 28,672 7 1,792 7 112 7 7
8 32,768 8 2,048 8 128 8 8
9 35,864 9 2,304 9 144 g 9
A 40,960 A 2,560 A 160 A 10
B 45,056 B 2,818 B 176 B i1
C 49,152 c 3,072 c 192 c 12
D 53,248 D 3,328 D 208 D 13
E 57,344 E 3,584 E 224 E 14
F 61,440 F 3,840 F 20 F 15

Right, now what to do with it ? Think of a number, an easy one,
say, 49. Look in column L4, is there a number less than 49 ? Yes that
number is 0, so the first digit is 0. Try In column 3, 0 again. Try
column 2, Ah hah, 48 1is 1less than 49, so the HEX digit is 3. Now
subtract 48 from 49 and look in column 1 for the HEX equivalent to the
answer., Yes, you got it, 1 !!! So the HEX equivalent of 49 is 0031. We
don't write the Decimal number 0049, so it follows that the HEX number
is 31. Also as we can't assume it's to 'base 10' (because it isn't),
we'd better tell the customers that its HEX, so:

Decimail 49 = 31H

Now that 1is a 1ot easier than writing 49 In Binary (which would be
110001), and even vaguely understandable to the uninitiate. Now try
19,514, and see I{f you understand how | got 4C3AH out of that. Go on
try a few numbers of your own.

The whole object of this exercise has been to point out that
different numbering systems exist and that HEX numbers are just as real
and meaningful as counting from 1 to 10 (in Decimal of course). How
computers make the conversion from HEX to Binary for internal use will
be revealed in the next chapter. Meantime, try getting to grips with
HEX, and relating it Decimal and Binary counting systems.

-22-

$100

READERS™ REPLIES

S100 EXPANSION

Below are extracts from several letters that we received in response to
our article in INMC 6 on Comp S100 expansion.

Dear Sir,

Firstly thanks for a newsy and (usually) accurate comic which is always
worth reading.

With regard to the article is Issue 6, caution should be exercised when
buying the COMP S100 expansion kit. We looked into using this product
to drive a (U.S.) Heuristics Speechlab Board and found that instead of
being a true $100 decoder, ONLY these signals required for use with the
range of boards COMP sell are actually decoded.

Hope the comments are of some use.
Yours faithfully,

J. Addey.
North Humberside.

Dear Sir,

In INMC News no. 6, | was pleased to see that someone else was
experiencing problems with the Comp $100 expansion. Mine has never
worked, | started off with symptoms similar to those described by Mr.
Curtis, but all this was cured by rearranging the wiring. My Nascom
works perfectly, on external, with the buffer S100 board attached, |
can write into the 8K expansion, but when | try to execute any program
in the expansion, the program Is corrupted. Any program in the on board
Nascom memory runs without problems. Anyway |'m now going to look at
the R/W lines. Comp assured me that they've had no problems with this
kit at all. At the moment I am working on connecting up an MM57109
Number Cruncher. | will let you know how ! get on.

Yours faithfully,

A.C. Cox
Abadan, lran.

-23~

Dear INMC,

After receiving INMC News 6, | am prompted by vour S100 expansion
article to write to you about my own efforts in that direction.

When | started expanding my Nascom 1, my first step was to buy and
construct the Nascom buffer board. After this | decided to go my own
way and use S100 rather than Nasbus, primarily because of interest in
$100, and also because at that time {(mid 79) there was no way | could
get hold of Nascom 8k memory.

I was lucky enough to be enquiring one day about 8100 backplanes in
Comp Shop of Barnet and they kindly sold me a blank PCB as used in
their own S100 expansion kit. On closer examination of this PCB |
noticed that they had, in their design, provided a set of holes at one
end of the board to take the standard Nasbus 77 way connector. This PCB
was then an ideal basis for Nasbus to S$100 conversion.

The PCB was cut accordingly just leaving the three 5100 sockets and the
Nashus connector. All address and data bus lines were still intact
between the sockets, with only the control bus signals vrequiring
attention. A simple circuit using three IC's was employed to generate
the S100 MREAD and MWRITE signals, the MEMEXT signal for Nascom 1 , and
the DBDR signal for the Nascom buffer board.

The standard power supply was upgraded as suggested by Mr. Curtis in
INMC 6, but with the addition of an extra smoothing capacitor and
current limiting resistor to provide a true 8V supply for the S100 on
board regulators. (The output at my bridge rectifier is approx. 10V and
would, without a limiting resistor, result in the vregulators getting
unnecessarily hot trying to dissipate a further 2V).

No problems were encountered running this set up, with 8k of static
memory; and with the recent addition of the excellent Nascom Rom Basic
chip (fitted to a surplus S100 board using a single TTL IC to decode
the chip enable). The system performs beautifully, with no hardware
crashes and a very cool running PSU.

A1l | now need is a copy of Nas-Sys 1 and | have effectively upgraded
to Nascom 2 (the on screen editing facilities of Nas-Sys are an
absolute must when editing 8k Basic programs). Perhaps the software
experts amongst vou will devise an addition to 8k basic, held in RAM to
provide these facilities for us poor Th owners.

| would of course only be too willing to give more information about my
conversion to anvbody contemplating a similar project, although |
suspect that nowadays with the plentiful supply of Nascom memory, users
would sensibly opt for a 100% Nascom system.

Yours truly,

Malcolm Bay,
Bedfordshire.

-24=-

P10 pages

USING THE PIO OR 'SPACE INVADERS MEET THE NASCOM PI0’ by Martin Dyer

| must confess that for a long time | regarded the PI0O as 'just the
third 40 pin chip on the Nascom board', but one day | would get round
to using it for some application.

Then INMC News, issue 2 arrived, containing a very useful article on

the PI0. This gave practical tips & facts not covered in the PIO-

Handbook. The article concluded with a request, nay more of a plea, for
members to describe their applications of the PIO.

Armed with all this information | set about making a Digital to
Analogue Interface using a Digital - Analogue Convertor (DAC) ! bought
at the Longleat (Amateur Radio) Mobile Rally.

+5Y

8 HYBRID SYSTEMS INC
Nascom . SERIFUIRSE 4 A
. ri
SKT A : § Digitat DAC 371-8 Analogue
. input output

o [
11

ov

No program was written, because using the T4 Output command port A
could be set up for mode 0 and no Tnterrupt, and data written to the
DAC. The long term aim is to attempt to write a Music Program, directly
synthesizing music waveforms or using the analogue signal to control a
voltage controlled oscillator.

For reference, the address of the supplier of the writer's DAC 1is LB
Electronics., 43 Westacott, Hayes, Middlesex. The writer has no
information regarding current price and availability.

Some time after, Graham Clarke's Space Invasion game was obtained from
the Software Library. | will certainiy recommend this game to every
one, it is most entertaining and very addictive. | won't describe the
game, so play it to find out! The software uses the A, X and Z keys to
input information to the Nascom from the operator. The KBD subroutine
detects the action of a key-depression but provides no Information if
the key is kept depressed. In the Space lInvasion game the effect was
making the software slow to respond to operator commands. The Hardware
and Software described below overcomes many of the problems.

Three push button switches were mounted in a 4" x 4" x 1.5" plastic box
and was connected to the Nascom by a multicore cable. This made a
hand-held control box, which was easier to use than finding the correct
keys on the keyboara,

Nascom
SKT A
1
uI l'I 1'
5 1 I)
oY I

MOVE MOVE FIRE
LEFT RIGHT

The program to drive the game replaces the code using the keyboard
exactly, apart from the delay routine which follows the end of the
original coding.

The program executes from DOOH, starting with PIO initialisation and
then Jjumping to the original program.

LOCATIONS ROUT INE DESCRIPTION

CA9-CCO MLOOP Scans the switches, will allow firing of a
missile whilst moving left or right.

CC2-CD2 FI1RW Fires a missile as per original program.

CD5-CElL T12 Prevents more than one missile being fired
for each key depression.

CE6-CFC) LEW Move left, as per original program.

DOD-D20)

DOO-D0OA START Initialises PI{; Starts program.

D22-DL4A REW Move right, as per original program.

FD2-FDE SLOW Controls speed of movement, by value at FDiL

0CA9 DB 04 CB 47 28 13 CB uF 28 6F CB 57 28 2F CD 76
0CB9 OD CD FO OE CD 7A OF 18 E7 DD 7E 01 FE 19 20 0C
0CC9 DD 77 C1 DD 36 01 20 3E 0L 32 52 OC DB 04 CB 57
0CD9 20 CE CD 76 0D CD FO OE CD 7A OF 18 EF CD D2 OF
0CE9 3A 50 0C FE 00 28 B9 DD 7E 00 DD 77 FF DD 7E 01
0CF9 DD 77 00 18 OF

0D00 3E FF D3 06 3E 07 D3 06 D3 06 C3 24 OF DD 7E 02
0D10 DD 77 01 DD 36 02 20 DD 2B 3A 50 0C 3D 32 50 0C
0D20 18 87 CD D2 OF 3A 50 0C FE 2C 28 F4 DD 7E 02 DD
0D30 77 03 DD 7E 01 DD 77 02 DD 7E 00 DD 77 01 DD 36
0D50 00 20 DD 23 3A 50 0C 3C 18 D3 00 00 3A C6 0D FE
0D50 09 FO F1 C3 97 OF

OFD2 C5 06 09 CD 35 00 10 FB C1 CD 76 0D C9

In principle, the ideas given above can be adapted to suit many games.
The unit makes Space Invasion much easier to play and saves wear and
tear on the keyboard when hitting the keys in the excitment of the
game.

-26~

Reviews

NASCOM 1/0 BOARD REVIEW ' D. R. Hunt.

The Nascom 1/0 board was ¥just too late for the last lissue, so
this review was held over. The 1/0 board accomodates 3 Pl0Os, 1 UART and
1 CTC. The Pl0Os are the MK3881 type as fitted to the Nascom main board,
the UART 1is 1likewise similar, but has a crystal controlied BAUD rate
generator giving speeds from 110 to 9600 BAUD, transmit and receive can
only take place at the same speed, uniike the separate transmit/receive
arrangement on the Nascom 2. The final chip 1is the MK3882 '"Counter
Timer Circuit'", an Iingeniously simple chip, more details later. The
board is supplied with sockets for all the chips, but only the
necessary chips to put the board into action come with the kit. The
major 1/0 devices, their attendant decoders, plugs, leads (and 1in the
case of the UART, the BAUD rate generator, crystal and sundry Rs and
Cs) are supplied as 'add-on' packs, to be purchased as required. The
kit 1is supplied with documentation and the P10, UART and CTC technical
manuals. The three Pl0s talk to the outside world through three 26 way
connectors f{(a 1la Nascom 2) on the front edge of the pcb. The UART has
RS232 and 20mA input/outpur via a 16 pin dil socket. The CTC
input/output and the BAUD rate select are also via 16 pin dil sockets.
If | remember correctly, the original published spec. of the 1/0 board
included a modem as well. This seems to have fallen by the wayside.

The issue 2 boards supplied have a track error which we
understand was not spotted until a quantity of pcs had been made, and
an errata is included giving the small amount of ‘'board surgery'
required. This 'surgery' is only required when the UART is brought into
play. The errata also covers other small documentation errors, but has
not spotted that PIO 1 and PI0O 3 are reversed throughout. The
documentation rates the 'INMC FOUR STAR AWARD' for incomprehensibility,
understanding was not helped by the fact that a number of kits escaped
with the last three pages of the documentation missing. The circuit
diagram however was clear and detailed, and once one realises that the
8131 decoders used are only glorified XOR gates (or comparators), then,
what the documentation lacks, the circuit diagram makes up for.

Construction was straight forward and simpie, the pch being of
the wusual high standard, however, the style of pcb layout was entirely
different to the usual style of Nascom pcbs, which made following
things through a little more difficult than usual. Nothing wrong here,
just different. We understand the pcb was laid out by hand rather than
Nascoms' wusual practice of using a drafting computer. The manual gave
details of recommended |/0 mapping, although perhaps this was
uninspired, and not helped by the missing appendix which we presume
gave an expanded 1/0 map. Connecting the decode 1inks was carried out
from the drawings in the manual, no explanation was offered as to why
things should be 1linked in the fashion shown. Watch out for the fact
that the Nascom internal port decode (I0EXT line) can be set to either
ports 0 - 4 or 0 - 8, When used with Nascom 1 the onboard PI0O has to be
removed, meaning that the lowest decode address may be 4, whereas the
PI0O in the Nascom 2 can remain in situe, if so, then the lowest decode
address should he set to 2. After a visual check, the board was tried.

Then a hidden bug appeared. We've mentioned before that the |EI
and IE0 1lines get connected together on z Nescom 2 if you use the
little mini-bus that was supplied with the 16K versions or a 'Vero
bus', and this means that the 'daisy chain' interrupt priority function
is 'a1l screwed up'. Not a serious problem, but requires thought to

Qe RO

~27-

unscramble in a satisfactory manner. The best way to get |El and [EQ
straight is to, first, read and understand the bit in the PI0 manual
about the 'daisy chain'. There is a good applications note titled "The
Z80 Family Program Interrupt Structure'" avaliable from Zilog, which
explains everthing. Then c¢ut the tracks between 19 - 19, 20 - 20
between each card on the bus. Decide which end of the bus is going to
have the highest priority and connect a 10K resistor to bus line 19 at
that end. Connect line 20 of the highest to 19 of the next highest,
connect 20 of this to 19 of the next, and so on. Whilst you are at it,
repeat the process for BAI/BAO, as these are a form of ‘'daisy chain'
also. The cards may then be inserted from the end which has the highest
priority, the 'chain' 1linking through the RAM cards etc. Do not leave
gaps in inserting the cards, as the 'chain' would then be broken. A
simple test program was written, and each device on the card tested and
found to function correctly.

The 1/0 card allows considerable addressing flexibility, with
the ‘'daisy chain' fully implemented even when devices are left off the
board, so that two 1/0 cards could be used, each only containing two
PI0Os for instance. On the card itself, the priorities for the 'daisy
chain' are fixed, with the CTC being the highest, folliowed by Pl0Os 1 -~
3. The UART is not implemented within the priority structure. Cascading
of two 1/0 boards is possible, but more may put timing Jlimitations on
the priority structure. The Zilog application note explains what could
happen.

In general, the /0 card is another carefully thought out
product, let down (as usual) by poor documentation. Although somewhat
of a speclalist nature, it is a must for those who want to speak to the
outside world. Of course, interrupts may be a problem, as NAS-SYS 1 is
not interruptable, (and there are limitations on the NASBUGs as well).
There is a new monitor on the stocks, which overcomes this problem, and
has other enhancements. But for most people, interrupts can be handled
with a 1ittie careful programming. If you are clever enough to work out
how to use the interrupts in the first place, avoiding trouble with the
monitor should only be a minor inconvenience.

Lastly, a brief description of the CTC, as this device will be
unfamiliar to most wusers. This is a simple but very versatile chip
consisting of four virtually ildentical chanels. At the heart of each
chanel is a 256 (8 bit) countdown counter, with a parallel register
which contains a preprogrammed constant. At any time the processor can
access the countdown counter to determine the count, or preioad the
constant register. Two inputs are provided for the countdown counter,
and may be selected by the appropriate control word. One from the
system clock via a divide 16 or divide 256 prescaler, or from an
exterrial input. Control words select the sense of the trigger counting
edge, or in the timer mode, whether the count will start immediately or
after the input of a preselectable input edge. The scheme is as
follows:

Preload the constant, allow the countdown to proceed to zero,
whereupon the CTC outputs a pulse, and optionally causes an interrupt
(telling the CPU which of the 4 counters it was}. At zero count, the
constant is reloaded into the counter and it all starts again. All four
counters work independantly, and may be timers or counters, they may be
cascaded allowing very large division ratios to be achieved if
required. It really is a clever little beast with dozens of uses.

Nice one Nascom!

-28-

Review of Port Probe and Key Pads from Bits & P.c's. by R. O0'Farrell

e e L L T e e

The Port Probe is a small single sided P.C. board 4" x 3", supplied
drilled and tinned, which holds 4 i.c.s, an 8 position DIL switch, 9
LEDs and four push button switches. The 1i.c.s are supplied with
sockets, and are configured to make up a clock, whose frequency can be
altered by a preset within 1imits (1 cycle every 0.5 sec to 1 cycle
every 3 secs approx). This clock can be started and stopped by two of
the push buttons, and s fed to a timing chain. Selected outputs from
this chain can be fed to a PIO port (16 pin dil connector supplied) and
the workings of this complex and mysterious item explored in full. The
other two switches on the probe are to reset the counter and to
handshake with the port. It is well documented with two sample programs
supplied to get vou started. At the price of 11.20 | would regard It as
a must for any N1/N2 owner.

The control and HEX keyboards consist of a bank of keys on each side of
an island of i.c.s. Depending on whether you order one or the other or
both, so you get the centre island, and one or the other bank of kevs.
The keys are supplied with proper keytops, very 1like the Nascom
keyboard. If you have changed an N1 to Nas Sys, then the control keypad
allows all the cursor movement characters to be accessed easily ~ much
easier than remembering how to get say ‘'control T'. Again, well
documented and socketed. The extension board takes the umbilical from
the Nascom board, and in turn plugs into the Nascom Main board. For a
Nascom 1 vrunning under Nas Sys, the control pad is essential, the HEX
pad not so important. One slight problem on mine, a tendancy for
certain characters to repeat. This | cured by swapping certain of the
i.c.s about. 1| feel it is due to the flipflop connected gates on the
Nascom Keyboard re-flipping because of echoes on the line, and perhaps
if it occurs often a veroboard mounted line driver near the N1 keyboard
might cure it. A1l in all, two most satisfactory purchases. | strongly
recommend the port probe to all N1/N2 owners, and the control section
of the extended keyboard to Nl1's running under Nas Sys. The control
keypad costs 23.10, the HEX keypad 30.10, and both together 37.25.

3M PERSONAL COMPUTING CASSETTES. by D. Brough

3M have recently introduced Cl0 & C30 cassetts designed for p?rsona]
computer users. Several people have had very good results with the
C30's up to at least 1200 baud both on NASCOMs and SORCERORs. Oqe of
the test tapes did have some creases which caused dropouts but this was
replaced without question. The tapes at present have transparent
leaders but this mav be changed soon. Prices are:- (Post Free).

c1l0 - 64p 1ncl VAT C30 - 67p incl VAT

Contact 3M at 3M (UK) Ltd., P.0O. Box 1, Bracknell, Berkshire. RG12 1JU.

¢
4
¥
!
1

~2G

Review of Cottis-Blandford Cassette Interface. By J.R. Keneally.

o e e e M e e mm mm s ey e e i e amm S S MY mw MR T A A A e e A s g e e o e e o B
- R R R R R A

This note describes some experiences in using the cassette interface
supplied by Newbear Ltd. (Kit form, current price 12.50), and may be of
use to anyone wishing to upgrade the speed and vreliability of the
cassette interface on their Nascom 1.

Technical detalls.

1. Uses CUTS type encoding (one - 2400Hz, zero - 1200Hz).

2. Capable of running at 300 to 2400 bits per second.

3. Fairly easy to interface to the Nascom, though the method suggested
by Newbear can be improved upon (eg: see below).

Value for money ?

The kit seems reasonable value for money, but there were several
pitfalls for the unwary. The two main ones were:

1. The printed circult board 1lay-out 1is poor, and must be very
carefully checked for bridges across tracks. Also, it is very easy to
cause bridges when soldering certain connections.

2. The documentation is wrong in places, and vague in others. For
example, two of the board terminal points were labelled incorrectly on
the board lay-out diagram, and it was not stated anywhere that all the
output terminal points had to be wired to go to the outside world via
spare inverter-buffers in IC3.

The moral is to cross-check everything against the various diagrams
etc.

Does 1t work ?

On first switching on the finished kit, the transmitter section worked
properly, and the tapes could be read back on the Towest speed of 300
bits/sec, though with low reliability. Clearly, there were no wiring
faults. The problem was traced to two causes:

1. The amplitudes of the high & low frequency tones on replay were
different by a factor of about three times. This was due partly to the
low~pass filtering used on the transmitter output circuitry, and
possibly also due to poor tape recorder frequency response. When the
transmitter output circuit was set up so that roughly equal amplitudes
were obtained on replay, a big improvement in reliability was obtained.
This required a high-pass RC filter, Jjust the opposite of that
provided. Obviously, adjustments are required to obtain good results
with particular recorders.

2. The input circultry from the replay has no means of adjusting the
D.C. bias 1level, so as to give an even mark/space ratio on pin 10 of
IC10 (a). This ratio seems to be very critical for high reliability,
and the required bias can easily be obtained using a potentiometer
across the 5V supply. The trick seems to be to record a section of tape
having no data on it, i.e just a continuous high frequency tone at 2400

-30~

Hz, and then adjust the bias level to give even mark/space at the
lowest possible input level that will achieve stable square waves at
1C10. It is also worth reading the article in PCW December 78, which
describes the interface in detail.

After making the above twiddles, the interface now runs reliably at
2400 bits/secs., ie 10 times the standard Nascom 1 speed | | personaily
have standardised on a speed of 1200, and so far the error rate has
been zero. A word of warning, however: you may find that on the highest
speeds, the TV display will not scroll fast enough to avoid missing a
cassette character. Consequentliy, if an error does occur during a LOAD,
all subsequent lines can be in error.

Connections to Nascom

The documentation recommends various wire 1links to be made to the
serial 1/0 socket SK2. It makes it easier to retain the ability to use
the normal Nascom interface if the UART clock at LINK 4, and the Nascom
generated UART input at LINK 3, are also brought out to spare pins on
SK2. The normal Nascom configuration can then be re-established, for
instance, by wiring a 'dummy' plug tc fit into $K2. 1t will still, of
course, be necessary to change the actual tape recorder connections
back to the Nascom board.

SMHZ

After our comment about 8K Basic oniy running with a wait
state, we have had a number of letters from people saving that their
Basic runs fine without a wait state. There are two problems, first the
ROM is (unbelievably) dynamic. It achieves Tts refresh from the CE
signal. The first time it's accessed, it's a bit slow, and sometimes
doesn't quite make 1t in time for the read cycle, hence a 'crash'.
However, the read cycle refreshed the ROM, so if you are quick about
tt, reset and restart the system, then the Basic runs perfectly. It
won't forget what it was up to unless you write very 1long 'USR'
routines which 1leave the Basic ROM alone for some time. The book says
2mS, but we've found that a typical Basic ROM won't forget until about
15 seconds have elapsed.

The second problem is the RAM (A) board not being up to UMHz
because of timing problems with the CAS and RAS signhals. If you would
like your system to run at 4MHz without wait states the fixes given on
pages 22 and 23 of fissue 7 of the INMC News may be necessary, in
particular Ttem 3 at the top of page 23.

. g T T e

PASCAL Notes

PASCAL by Rory O'Farrell

Notes on the steps towards implementation of a "Tiny" Pascal
for Nascom,

The best known of all Tiny Pascal compilers is that published
in BYTE, Sept./Oct./Nov 1978, by Chung and Yuen. This is designed to be
Implemented on a North Star with floppies, and is written in Basic!
(Ugh!). It can however be made to run on a Nascom with 8k Basic. The
main changes involve the Functions - North Star Basic allows multiple
1ine functions, Nascom does not, but the change 1is easy. In the
original, FNG (x,y,z,) is defined with a multiple line definition - for
Nascom 1lcad three variables not used eleswhere, say e.g. Gl, G2, G3,
then GOSUB the line where vyou have repeated the body of the FNG
(x,v,2,) definition (Using Gl, G2, G3, as the variables). Each call to
the function is replaced by a line consisting of Gl=value 1: G2=value 2
G3=value 3: GOSUB LINENO. This is quite effective in the case of FNG,
the code generation function, and can be done on the fly, as you enter
the program. The two error functions can be handled simllarly. The
notes in the back of the Nascom Basic Manual on string format
conversions between one system and another are most useful, as North
Star uses a different convention for MID$ commands. The program as
published in Byte can be fitted in less than 20K - 1less than 16K if
comments are deleted.

The Basic program as published in Byte produces pseudo (p)
codes for an ideal machine. Unfortunately Byte no longer make available
the Pcode to 8080 converslion program, so one will have to be written.
Then to compile a Pascal program there will be two stages - use the
16/20K basic program to produce a Pcode listing, and then use a Pcode
to 8080/Z80 translator to produce machine code. This machine code will
have a number of calls to runtime support routines (perhaps in Eprom)
for functions such as multiply and divide., but Chung and Yuen state
that their support package amounted to about 1K, so it should not prove
an insurmountable task to write.

This combination of Basic/Machine language programs will not be
the quickest way to complile a Pascal program, but it is possible (I
hope) and may allow a Pascal compiler written in Pascal to be compiled.
For the Pascal compiler written in Pascal, | would direct attention to
a new book "Structured System Programming " by Welsh and McKeag of
Queens University of Belfast (Prentice Hall International). This
contains within it a very nice Pascal compiler, written in Pascal, to
produce what they call MINI Pascal. It l1ooks very nicely written, and
Is modular in form, so that the code generation section which generates
code for a 24 bit representation of an ICL 1900 could be rewritten for
a Z80 (1'd be interested to hear from anyone who has done/is prepared
to do this). Unfortunately, this Mini Pascal compiler uses some Pascal
constructs not implemented in the Tiny Pascal, so a certain amount of
extension of that will be necessary, before the Mini Pascal can be
compiled. A format control program in Pascal was given In PCW April
1980, and might be of wuse in the editor section of a Mini Pascal
compiler. To get the vast amount of source program through the machine
may create a problem In memory management, but a little bit of thought
should overcome that difficulty - (auto tape start/stop?)

| would be interested to correspond with anyone else working
along these lines.

(Ed: We have seen a Pascal for the Nascom advertised and we
hope to get a copy for review shortly.)

-32-

280 Books

Books and the Z80. ' by R. 0'Farrell

EE R R L

When faced with a 1limited budget, and a microcomputer which |is
constantly demanding new peripherals, one is loath to spend money on
non essentials. To many people, books come under this heading, and such
people are frequently the ones who are to be heard compliaining of the
difficulties of learning how to program. 1t is my belief that the
correct choice of book or books can have a value disproportionate to
its cost. Nowhere is this more obvious than in computer books - some
are very very good, others are a waste of the paper on which they are
printed. What | intend to do in the following page or so is to give the
name, author, and publisher of some books | have read on some aspects
of computing, with a very short and highly subjective series of
comments on it, only approximate prices are given in pounds sterling,
as the Irish pound fluctuates in value against sterling (and we have
10% VAT on books). The views expressed herein are mine alone, and have
not been purchased, or induced in any way (although | am open to good
offers - I'm considering a floppy disc system).

The Z80 Microcomputer Handbook, W. Barden: Sams (distributed Prentlice
Hall costs about 6.50) 1t 1is a paperback of some 300 pages, and
contains a full description of the opcodes of the Z80, and then
proceeds to demonstrate their use iIn a series of short and useful
programs. The book then concludes with a description of 4 Z80 systems.
A most readable and interesting book, and if you decide to have only
one then make it this one.

The Z80 Software Gourmet Guide And Cookbook, Scelbi (7.35 | think) is
another in Scelbis' Gourmet Guide series. A complete description of the
Z80 codes and discussion on how they may be used, culminating in the
presentation of a floating point package, which will fit in two
kitlobytes. This floating point package is interesting because it can
readily be extended from four bytes to as many as you like. There is
one bug in it, AND A,1 rather than ADD A,1. If Iinterested 1{in number
crunching, then this is for vyou.

Assembly Language Programing - the Z80: Lance Leventhal: Osborne books
Costs about 7.50 and is probably more complete in its treatment than
the Gourmet guide. Whether it is as readable is another matter. It has
a very complete treatment of the programing of the PIO and the SI0
which make it worth having.

Programming The Z80, R. Zaks: Sybex (8.00) is more or Jless Sybex's
answer to the Osborne Leventhal book. It contains 600 pages and
includes a page by page description of each of the op-codes (as does
Leventhal) which would make the purchase of the Mostek/Zilog 'Z80
Programming Manual'! unnecessary. It deals with the PI0O and SI0, but
only lightly, referring you to the next volume "Z80 Applications" which
is not yet in print. | can't wait for that one. |t has a number of
useful subroutines by way of example, including a Binary search for
symbol tables - just after 1 had written one! In consequence of my
disgust at this blatent piece of upstaging on Zaks part | cannot claim
any impartiality !

w33

On Basic | found the following to be of use
ITlustrating Basic, Alcock: C.U.P. (Paperback recommended).

Microsoft Basic, Ken Knecht : Dilitium. On general theory, but
exceedingly expensive - you have been warned.

Compiler Construction For Digital Computers, D. Gries, J. Wiley.
(8.00-10.00 in paperback) probably the bible, but also probably
slightly dated ? Not for beginners.

Writing Interactive Interpreters and Compilers, P. Brown: J. Wiley.
(8.00). A book which is fun to read, and makes you feel that you could
write your own compiler. Emphasis very much on Basic.

Understanding and Writing Compilers, R. Bornat: Macmillan. (6.00)
paperback. Much heavier than Brown, but with more meat and also more
oriented to Pascal/Algol type languages. Not for the beginner.

Structured System Programming, Welsh & McKeag: Prentice Hall. (14.00)
Interesting in that it presents a Mini Pascal Compiler written in
Pascal, and shows the importance of structure in writing clear
programs.

System Programming, Donovan: McGraw Hill. (6.50). A useful book which
lTooks at the theory and implementation of Assemblers, Compilers,
Interpreters and Operating Systems. Although wusing IBM assembiy
language, it 1is quite clear, and forms a good introduction to these
subjects.

On the subject of programming with style - has anyone looked inside the
Nascom Basic ? |It's only a 8080 basic, with input output patches all
over it. It provokes the throught of how much faster/more compact it
would be if it were written In Z80 code from the ground up. Benchmarks
on the Xtal Basic and Nascom Basic might be interesting to compare.

Ads.

CLASSIFIED ADS

For sale, Texas 'Silent 700' terminal, type 745. A completely
portable thermal printer/terminal with built-in telephone modem (US
standard, but alterable). 96 character ASCII character set. The whole
thing 1is the size of a portable typewriter. Roughly 2 vears old
(inspection stamps dated Apr 78) and very little used. Thermal paper
costs about 1.50 a roll from Texas. Would cost over 1500.00 if bought
new, yours for 600.00 or near offer. Phone Dave, 01-427 0840,

Two Olivetti TE318 teletypes. Upper/lower case, ASCIl, nice
looking typeface, with paper punch/reader. 110 BAUD input. Fully
working, but no guarantee though. Offers around 200.00 each. Phone
James Roberts, 01-960 5430.

-34 -

Doctor Darks CDiaer

DOCTOR DARK'S DIARY - EPISODE 6.

| don't understand high finance, so | don't know why Nascom called in
the vreceiver. | don't know why anyone would suddeniy decide not to
invest in something that is obviously a winner, but ! do hope we will
have it all explained to us. And if my Nascom-ERNIE interface works,
I have no doubts at all, I'11 tend Nascom my #250,000 prize, if it will
help!

Fingers crossed now. As long as these get printed, 1'i1 keep writing
them.

FEEDBACK - 1.

Feedback 1 was going to be a short program (9 bytes) to give back the
use of the backspace key when using 'L' to 1load free programs.
Unfortunately, | don't seem to be able to get it to work. If the author
of the letter can explain this, | will not name him!

FEEDBACK - 2+3

Mike Phillips of Wiltshire and W.S. Lounds of Lancaster both sent in
Nas-Sys verions of Intabs. As Mr. Lounds has had his pubiished in the
Liverpool Software Gazette, here is the Mike Phillips' version.

OEOD ED 5B OE OC CF FE 2E 20 02 DF 5B FE 20 20 F5 DF
OEI10 6A EB DF 66 EB 01 05 00 EF 3E 20 00 1A FE EF 20
0E20 OA D7 68 A7 28 2B F7 13 1A 18 F8 FE DD 28 28 FE
O0E30 FD 28 24 FE ED 28 42 QOE 1A 2A 0C 0OC D5 11 96 00
OE40 19 D1 ED Bl 06 03 28 OB 01 1B 00 ED Bl 06 02 28
0E50 02 06 01 D7 38 18 AD D7 32 2A 0C 0C D5 11 AD 00
OE60 19 D1 ED Bl 28 DE 2A 0C O0C D5 11 DI 00 19 D1 OEF
GE70 0B ED Bl 28 DC 06 02 18 DA D7 10 OC 2A 0C 0OC DS
OE80 11 CB 00 19 D1 ED Bl 28 BB 18 C6 06 01 DF 68 DF
O0E90 69 13 1A 10 F8 C9 01 11 31 32 3A C2 C3 Ch4 CA CC
CEAD CD D2 D4 DA DC E2 E4 EA EC F2 F4 FA FC 21 22 2A
OEQOB 36 CB 06 OE 10 16 18 1E 20 26 28 2E 30 38 3E C6
0ECO CE D3 D6 DB DE E6 EE F6 FE DF D7 43 4B 53 5B 73
OEDO 7B 09 19 23 29 2B 39 E1 E3 E5 E9 F9 00 00 00 00

It gets the 'RST' instructions right, and is even more amazing when you
are told "this program was produced by hand disassembling the published
routine to give a source program, after which the various calls were
modified to run under Nas-Sys. This stage was not too easy for me, as |
do not know T4 (or T2 or B-Bug), and a little guess work was called
for." Mr. Phillips went on to suggest that it would be helpful if a
list of sub-routine calls for the various monitors could be printed.
Naturally (being from the Frog Star) | suggested he might wish to do
it, and offered to supply him with copies of the T2 and Tk listings.
All we need do now is walt.... (Or turn to the article in this issue
-Ed.)

b e et et
T T T TR T

-35-

FEEDBACK ~ 4

Dr. L.C. Waring of Holywood, Co. Down sent me a tape of his "Tomcat"
Editor Assembler which uses the TDL mnemonics - and he has versions for
early monitors and Nas-Sys. So far, I've only had a single try at
making it work. With my usual skill, | managed to produce all possible
error messages in no time at all. If the same thing happens next time |
try to wuse 1it, | suppose I'11 have to read the instructions! It is
hardly necessary to add that | suggested he submit it for inclusion in
the program library.

Other people have written interesting letters, and | hope they aren't
offended by not being mentioned. Now for some of my own work.

SORTING IT OUT.

There are many ways of sorting data into order, the fastest | have seen
is the M"Quicksort". The version below is adapted from a demonstration
for the Commodore Pet (whatever that is) printed in the Liverpool
Software Gazette (nearly as good as this magazine).

10 INPUT "NUMBER OF ITEMS TO SORT";NE
15 IF NE<255 THEN 30

20 PRINT "TOO LARGE.™"™ :GOTO 10

30 DIM A(NE),ST(10,2)

35 LE = 1: R1=2

40 FOR | =1 TO NE

50 A(l1) = 100 * RND (1): PRINT A (I);
60 NEXT |

70 REM NOW THE SORT ITSELF

80 SP 1: ST(SP,LE)=1:ST(SP,RI)=NE

85 LR ST(SP,LE): RR = ST(SP,RI1):SP=SP-1
90 I = LR:J=RR:X=A(INT({LR+RR}/2))

100 IF ACE)KXTHEN 1=J+1:G0TO 100

110 IF X<A(JITHENJ=J-1:G0T0O 110

120 IFI>JTHEN 130

125 W=A(1):AC1)=A(J):A(J)=W:I=1+1:d=U-1
130 IF 1<=J THEN 100

135 1F 1<RR THEN SP=SP+1:ST(SP,LE)=1:ST(SP,RI)=RR
140 RR=J

145 1F LR<RR THEN 90

150 IF SP<>0 THEN 85

155 PRINT : PRINT

157 REM HERE COME THE RESULTS

160 FOR 1=1T0 NE

170 PRINT AC(l);

180 NEXT |

190 END

If you want to sort more than 255 1items, the array ST() should be
larger. DIM ST(30,2) will allow vyou to sort much larger arrays,
whereupon time taken is extended considerably. It remains much faster
than a "Bubblesort" however. The same program will sort strings, if A()
is changed to A$(), X to X$ and W to W$. At 2MHz it takes about 10
seconds to sort fifty words.

-36~

USEFUL POKES IN NASCOM BASIC

To prevent an automatic Newline being put into a printed line after 47
. characters, use POKE 4162,255. To restore to normal after the above,
use POKE 4162,47. To produce double line spacing on the screen, use
POKE 4162,0. This information Is from the Liverpool Software Gazette =
if you know any "useful pokes'", why not send them {n ?

BASIC ROM ON MEMORY BOARD.

| must apologise for the ambiguous instruction | gave! | meant bend the
pins of the wire wrap socket (NOT the ROM) out and solder to them. |
bet you all realised what | meant, anyway!

FREE GRAPHICS SUBROUTINE

1000 CLS:X=0:Y=0:W=9L:H=42:L=0
1010 FOR I=1 TO W: SET (X,Y):X=X+1: NEXT |
1020 1F L=0 THEN 1040

1030 W=W-1
1040 FOR I=1 TO H: SET(X,Y):Y=Y+1:NEXT |
1050 H=H-1
1060 FOR I=1 TO W:SET(X,Y):X=X=1: NEXT 1
1070 W=W-1

1080 FOR I1=1 TO H:SET(X,Y):Y=Y-1: NEXT |
1090 H=H-1:L=L+1: |F L<22 THEN 1010
1100 RETURN

"Not that old thing again !" you all say. 'Fraid so, but much slower
than before.

Eds. comment: This sounds like a great idea for a competition. There
will be prizes for:

(1) the shortest (fewest bytes) and
(2) the quickest

ways of achieving the above using BASIC. Machine code subroutines are
not allowed, nor any crafty playing with the reserved words.

Entries should reach us by 1/8/80, and the nature of the prizes will be
decided at some future date !

WHATR?

Mindblowingwifeannoyingmainsgobbiingkeyboardthumpingtapechewingmoneydem
andingsquareevegivingnausecreatingteethgrindingbyteeating NASCOM
Who said Popsi adverts were exclusive 7

e e

-37-

Index

Index to INMC Newsletters 1 = 7

I NMC

Committee and how it works
How it works

Services

Software library

HARDWARE

4UMHz operation, Nascom 1

4MHz operation, RAM (A)

8K Basic on RAM {(A) bocards

Aztec UHF modulator, fitting of, Nascom 1

Bit 7 and graphics characters

Bits & PCs graphics review

Bits & PCs dual monitor and scratch keyboard review
Centronics printer interface connections and software
Comp 'joysticks' review

Comp S-100 bus review

Documentation errors, Nascom 2

Doubling tape 1/0 speed, Nascom 1
Econographics review

Expansion, minimum, Nascom 1

Expansion, Nascom 1, brief details

Hardware faults, Nascom 2

IMP printer review

Keyboard cabinet review

Memory plague

Missing characters on display, Nascom 1

Mk | 2.2 amp PSU correction

Mk I 2.2 amp PSU improvements
Multi~processors, start of

NASBUS, brief description

NMI break generator, Nascom 1

P10 operation

Port 0 floating inputs, Nascom 1 (and 2)

Power supply bussing, Nascom 1 iss B

RAM (B) review

RS$232 to standard Cannon DP25 plug connections
Serial 1/0 socket connections explained, Nascom 1
Snow plough, Nascom 1

Tape 1/0 corrections, Nascom 1 iss B

Teletype interface, Nascom 1

Teletype UART speed setting, Nascom 1

TV syncs, Nascom 1

William Stuart graphics review

3/12,

F I RMWARE

8K Basic compatibility

Assemblers, comparitive review

CC Soft level B Tiny basic, brief details
MS (mini PILOT type) Interpreter, mods
Mushroom Basic, bhrief details

NASBUGs and B-BUG, comparitive review
NASBUG T4 description

3/19,

5/12,

5/15,

2/6,

6/25
5/3
6/0

6/28, 7/35

3/13, 4/11
7/22
7/17
1/2
7/10
4718
7/8
1/6
5/10
6/11
6/9
1/3, 2/2
7/14

6/31, 7/24
4/8

5/15

7/12

7/14

7/17, 7/22
1/2, 6/27
1/1

1/1

6/4, 6/19
1/1

b/1h, 2/4
6/4, 6/19
2/2

3/13, /11
7/23

1/4

1/4

172, 2/4
1/3

1/3

2/3

b/1h

7/16

6/15,
/15,

4712

5/17

4/6, L/16
6/13

5/9

3/16

2/11

-38~

NAS-D!S 1.0 review

Naspen review

NAS-SYS 1 a brief glimpse

Resident firmware review at June 1979
“Super D-BUG review

Tape interface warning (see Tl tape patch), NASBUG Tl
Tiny Basic, brief details

V & T assembler review

XTAL Basic, brief details

XTAL Basic 2.2 review

XTAL Basic 1.3 update -

ZEAP 1.1 assembler, brief details
ZEAP 1.1 assembler, review

ZEAP 2.0 assembler, review

ZEAP 2.0 mods

ZEAP in EPROM

ZEN assembler review

SOFTWARE

8K Basic, RESTORE command

Rreakpoint command, NASBUG (and NAS-SYS)
Centronics printer interface software and connections
Comparing two 16 bit registers

Display of characters below 20H, NASBUG
"Fake jumps and calls!'

Input ARGS, NASBUG and NAS-SYS

Interrupts and NAS-SYS 1

LDI, LDD, LDIR and LDDR instructions, use of
Memory map, suggested '

Memory map, video

NASBUG T1 tape input correction patch
NAS-SYS, correct use of

NULLS and NASBUG and NAS-SYS

PARSE routine and NASBUG

PRS routine, NASBUG

Sargon Chess

Software hints, 8K Basic 4710, 4/13,
Software hints, machine code 2/5, 3/15, u/17,

Software hints, Tiny Basic
'T' and 'L' commands to load programs
Tiny Basic, speeding up programs

Unsupported opcodes 3/5,

PROGRAMS

Chase (NASBUG, machine code)

Crash (NASBUG, machine code)

Demon (reset jammer) (NAS-SYS, machine code)

Doubie mastermind (NASBUG, machine code)
Fliva (%K Racir)

Fast array set up (Super Tiny Basic)

Fruit machine (NASBUG, machine code)
Go-Karting (NASBUG, machine code)

Hangman (NASBUG, machine code)

Hangman (8K Basic) ‘

House keeping with strings (Super Tiny Basic)
INKEY$ function with 8K Basic

L/25,
L/15,

L/15,

3/10,
5/17,

2/h,

6/17,

7/6,

6/7,

2/17,
4/9,

5/10,

/13,

7/28
6/2
L/21
3/3
7/29
1/4
1/6
5/17
4/6
7/30
5/16
1/6
5/17
6/24
7/19
6/8
5/17

4/10
274
1/6
6/7
2/h
6/7

5/24
G/8

3/15

7/18

7/27
1/5

7/20

4L/16
2/5
2/4

4/16

7/24

6/24
L/9
5/8
4/9
7/9

/26
4/29
7/17
2/15

5/34
2/17

5/27
5/26
5/28
6/36
2/17
/25

-390~

Jackpot (Tiny Basic)

JJ (NASBUG, machine code)

Length of strings (Super Tiny Basic)
Life (NASBUG, machine code)

Lollypop lady (NASBUG, machine code)
Lord (Super Tiny Basic)

Moonlander (NASBUG, machine code)

NAS-SYS, 8K Basi

¢ and the top line of screen

Othello (NASBUG, machine code)
Piranha (NASBUG, machine code)
Piranha (NAS-SYS, machine code)

PRINT USING function with 8K Basic

Random Buzz Word Linker (NASBUG, machine code)

Random 'shuffies' and 8K Basic
React (NASBUG, machine code)

Repeat keyboard
Reverse (NASBUG,

routines (NASBUG and NAS~3YS)
machine code)

Tiny disassembler (NASBUG T4)

REVIEWS

Assemblers, comparitive

Bits & PCs dual

mon{tor and scratch keyboard

Bits & PCs graphics

Comp 'joysticks'
Comp $-100 bus
Econographics
IMP printer

Keyboard cabinet
NASBUGs and B-BUG, comparitive

Nascom 2 assembl
NAS-DIS 1.0
Naspen

RAM (B)

y

Resident firmware at June 1979

Super D-BUG
V&T assembler

WiTliam Stuart graphics

XTAL Basic 2.2

280 Instant Programs, book

ZEAP 1.1 assembl
ZEAP 2.0 assemb]
ZEN assembler

er,
er,

COMPUTERS ? They're all Arabic to me 1

Vo@aﬁ‘_,ﬁ.

ozx .

L/1h,

6/21,

3/10,
5/17,

5/31
3/26
2/17
4L/28
2/10
5/33

3/9
L/23
3/24
5/29
6/33
7/18
h727
h/17
3/23

7/8
3/25
6/1k

5/17

7/8
/18
5/10
6/11
7/1b
7/12
7/14
3/16
5/13
7/28

6/2
7/23

3/3
7/29
5/17
7/16
7/30
7/33
5/17
6/24
5/17

-4~
Assemblers

ASSEMBLERS & NAS SYS By R. O'Farrell

Pending the availability of Zeap 2.0 at a reasonabie price to existing
users of Zeap 1.0 who have changed to Nas-Sys, a patch tape from DJ
Sotware renders your existing ZEAP fully usable on Nas-Sys. DJ Software
are the suppliers of Revas tupes (blessed by many who couldn't wait for
PCW to finish publishing the program), and this patch tape (price 7.50)
will probably prove more useful. The conversion is child's play for
T4/B-Buggers (sounds very doubtful, that), but a 1little bit trickier
for T2 wusers. Under your old monitor, you write a copy of the Zeap to
tape using the 'W' command on T4/B-Bug, or 'D' on T2. Then vyou power
down and change from the old monitor to Nas-Sys. Load the Zeap tape you
have just written ('R' command on Th/B-Bug) Here is where T2 users have
difficulty. They will have to write a small input routine to scan the
input for Nascom backspace, clear screen and new line, and substitute
ASCIl characters for them. In any event, when the Zeap Is loaded, do
NOT attempt to execute it. Instead, play the patch tape into the
machine. (No need for any commands). The patch tape will perform a
series of modifications and insertions, which consist for the most part
of replacing all system calls with the Nas-Sys 'RST' and 'SCAL' number,
and a padder NOP to fill the three byte space. There are also a number
of calls to an approx 300 (dec) byte extension at 1B08H. All this is
done automatically by the tape. When the tape has finished, you can now
enter Zeap (E F00) in the usual way. The tape is fully commented, in
the sense that it tells you at all times what it is doing (but not
necessarily in very great detail) and it is accompanied by a five page
commentary sheet, which is hard copy of the tape.

On entry, you will notice one difference: the top line message is now
on the second line from the top, and the serial number of your copy is
replaced by "OPTION 00", with whatever option is set displayed. This
eap T8 rarfarme EY (Yr-YaaY, 1iteafnl Fiimertinn. I+ hlanke out when the
Assembler cannot accept a command, and restores when it can. The V
(11st) command now lists in blocks of eight lines (Newline to continue,
any other key to terminate) and the F (find) command allows you to tell
it what 1line to start or continue the search at. The N (Nas-Sys) exit
command, when used with two arguments, allows 1lines of entry to be
written to tape or externally with no line numbers - a simple text
handier.

A very useful patch, allowing one to dispence with the schizophrenia of
using and thinking for two monitors.

Zeap 2.0 would be useful as It gives a symbol table, (and possibly
paginated 1listing ? (no =- Ed.)), but having spent 30.00 on Zeap 1 |
doubt if many will be tempted to spend the same amount on Zeap 2.

Those who are tempted to disassemble their Zeap 1 with Revas, or a

similar disassembler, will find that FOOH to F70H (approx) consist of

workspace and data areas, and 1003H to 1268H consists of the dictionary
These should be defined as data areas for the disassembler. There may
also be minor unpleasantness wherever a Restart is used under Nas-Sys,
but they can be coped with.

o it e T T

| o e s TSI e s T T

-4]1-

I have been using Zen for over a year (as well as Zeap), and have
patched Zen to run on Nas-Sys. It Is a very fast assembler with one
drawback « a lousy error handling function ! It aborts assembly on the
first error it finds. In "Writing Interactive Interpreters and
Compiliers'", P.J. Brown points out that a compiler spends most of its
time in the error handling mode, and should be designed to do this well
~ Zen definitely doesn't. | have been tidying it up, and have written a
number of Pseudo ops; TITLE to title a printed page, LIST and UNLIST to
allow selective printout of sections during assembly. RCAL and SCAL to
make life under Nas-Sys easier. | have also taken the DB, DW, DM,
pseudo ops to Zilog/Mostek standards (DEFB etc). My next miracle will
be to tidy up the error handling, so that it will do the first pass,
and point all first pass errors. Then {(perhaps) a macro facility ?

STOP ... (please?)

HALT ! By Richard Beal

B

If you want to halt a program this can be done by including the code 76
in your program. When this HALT instruction is executed, the program
counter stope buing Incremented and an endless stream of NOPs are
executed. The Z80 CPU detects that it has halted and a LED on the
Nascom lights to show that it is in a HALT state.

There are two ways to leave a HALT state. The first and most commonly
used is to press Reset, which restarts the computer and reinitialises
Nas-Sys.

The second method is for there to be ar interrupt. In fact, if you were
writing a program which was to do nothing at all except when an
interrupt occurred, vou could just code a HALT instruction. Note that
if you intended the Z80 to re-enter the HALT state after the completion
of the interrupt, then the code would be as follows:

76 18 FD

as the address of the HALT (pushed on the stack) at the start of the
interrupt, Is POPed off and incremented when a RET! instruction is
encountered.

This explains why you can Single-step through HALT instructions. The
HALT is executed once, but the NMI (Non Maskable Interrupt) generated
by Single-stepping jumps out of the HALT state at the end of the
instruction.

If you try to execute a program which has a HALT instruction as the
first byte, you will find that it will not HALT. The reason is that the
Execute command in fact Single-steps the first instruction and then
executes normally. So if the program was:

76 it would not HALT
But if it was:

00 76 it would HALT.

-4 2~

BASIC

BASIC PROGRAMS THAT RUN THEMSELVES by Richard Beal

e i o o ke e T S A M M A A o M R ik e e e e e

The Generate command in T4 and Nas-Sys provides an easy way of
writing a tape which contains a machine code program. When the tape is
fed in, the program automatically starts to execute.

Mr. J. R. Hunt has kindly written to us to point out that the
same c¢an be done for Basic programs. It is necessary to do the
following, once the Basic program is in memory.

a) Set up an output table for cassette output as well as output to
the display, and activate this table.

b) Use the PRINT statement to output the necessary commands to tape
which are fed back in. For example PRINT "CLOAD" will output the
CLOAD instruction to tape

c) Return the output table to normal.

The idea can be extended further with a string of commands:

Print "MONITOR" (in case Basic is already in use - will give
an error message if it isn't)

PRINT "JV (to run Basic)

PRINT (reply to '"Memory size ?' gquestion)

PRINT "CLOAD" (to load program)

CSAVE "A" (to save program to be loaded)

PRINT "RUN" (to run the program that has been loaded).

It is necessary to insert delays between these commands to
allow time for them to be processed when they are fed back in. The NULL
command should be used for this. It is easiest to put all this into a
little program at the end of the main Basic program, and run this when
you want to create a self loading tape.

Below is a listing of a complete program which will create a
self 1loading copy of itself, as an example. The tape produced can be
fed in either after switch on, or when the computer 1{s already in
Basic. It can be made quite small by removing all the comments.

LIST

100 REM #+ MAIN PROGRAM
110 INPUT"Type a number™;A
120 PRINT A"times"A"Mis"A*A
130 GOTO 110

30000 REM ** PROGRAM TO WRITE A SELF-LOAD
30010 REM » SAVE ADDRESS OF OUTPUT TABLE

30020 TS=DEEK(3187)

30030 REM * SET UP OUTPUT TABLE AT 0DOOH
30040 POKE 3328,101:REM 65H FOR CRT
30050 POKE 3329,111:REM 6FH FOR SRLX
30060 POKE 3330,0 :REM END OF TABLE
30070 REM * POINT TO NEW TABLE

30080 DOKE 3187,3328

30090 REM * SET END OF LINE DELAY

30100 NULL 100

ING_TAPE
0C73H

s

-43-

30110 REM * COMMANDS

30120 PRINT" REM * SELF LOADING BASIC PROGRAM"
30130 PRINT'MONITOR"

30140 PRINT'g"

30150 PRINT

30160 FOR I=1 TO 1000: NEXT: REM =* DELAY
30170 PRINT"CLOAD"

30180 REM * SAVE PROGRAM, CALLING IT "A"
30190 CSAVE"A"

30200 REM * RUN COMMAND

30210 PRINT"RUN"

30220 REM = SET BACK TABLE AND NO NULLS
30230 DOKE 3187,TS

30240 NULL 1

30250 END
2 @ 2 [@
LEVEL A BASIC

A 2K BASIC Interpreter for the unexpanded Nascom 1

Level A BASIC has been written to give users of Nascom 1 systems the
ease of programming in BASIC, without the need for extra memory or
expansion boards, It is supplied in two 2708 EPROMs, which are plugged
intc the EPROM sockets normally occupied by the Nascom Nasbug or
Nas—-Sys monitor program,

LEVEL A Features.

Integer BASIC - range -32767 to +32767

Variables -~ A to Z

Array - single dimension

Functions - ABS, RND, RAM

Arithmetic operators - *,(,/,=,—,<>,+,<=,>,>=

Statements - LIST, RUN, NEW

Commands - REM, LET, PRINT, INPUT, IF, GOTO, GOSUB,
RETURN, SAVE, STOP

Level A BASIC was written by CCSOFT. It is supplied in two 2708
EPROMs and comes complete with a user manual that includes fitting
instructions and example programs.

LEVEL A BASIC £25.00 + VAT + 30p P&P

OAKFIELD CORNER, SYCAMORE ROAD, AMERSHAM, BUCKS HP6 6SU
TRLEPHONE: 02402 22307 TELEX 837788

~44-
CASSETTE HINTS

Cassette /0 Reliability

A few people have written to us and have indicated that they
experience unreliable cassette 1/0. As far as we are aware, if
everything is set up correctly, very very few errors should be
encountered at normal speeds. The same applles at double speed on a
Nascom 1 or 2400 Baud on a Nascom 2.

If you have cassette |/0 reliability prohlems then the check
1ist below may help:~—

1) Make sure that the tape transport is <c¢lean (wiping with a
tissue will do for starters) i.e. that the heads, the pinch
roller and capstan are free of loose tape material.

2) Check for earth loops. |f the cassette recorder Is earthed, and
the Nascom 1is earthed (it should be) and there is an earth
connection between them, then problems may arise. The safest
one to disconnect 1is the one(s) between the Nascom and the
recorder. That's the safest, the best one to remove would be
the cassette mains earth. But on vyour own head be It.

3) The settings of the volume and tone controls can be quite
critical. Too much volume on record or play back may cause the
amplifiers in the cassette recorder to deliver a distorted
signal. Too 1ittle will not drive the cassette interface on the
Nascom. On recorders with one tone contrel {(normally a treble
cut) this should be set at or near the max. treble end {(i.e. no
treble cut). On others a flat or zero setting will normally be
best.

h) On a Nascom 2, VRl is best set up using an oscilloscope. Record
about five minutes of tone (plug in the recorder, and Just
switch to record. Play back the tone, monitoring TP19 with the
'scope. Adjust VRl to give as good a square wave as possible.

5) Use a reasonable quality tape. Since most cassettes are meant
for music/speech, using them to store very fast transitions
is not ideal. Some cheap tapes give a very low play back level
even when recorded at a good level. This is not critical for
sound but can cause problems for data.

A suggestion we have received from a member in Nottingham is to
load the cassette output (when the speaker output is being used) with
an 8 ohm resistor (or close to, but above this value) by connecting it
across the output plug. See 'Cut that Noise' elsewhere in this issue.

Cut That Noise —d

If you are using a signal output from a cassette recorder that
sti1ll has the speaker blaring away on play back then you may be
interested in this idea from a member in Nottingham.

Connect a Light Emitting Diode (LED) and a small ordinary diode

back to back with an 8 ohm resistor (or close to, but above this value)
in serifes across the speaker output. This will then give a visual

indication of 'tone - data - nothing' being output.

§
;
3

-5

2400 Baud Cassette, 300 Baud TTY for N2

Here is a very simple mod for Nascom 2 owners to give cassette
1/0 at 2400 Baud.

Connect TP20 to TP4 and TP21 to TPS5. If you now select external
UART clock you have the cassette interface running at 2400 Baud.
The switch settings of LSW2 are :-

Switch - 1 2 3 L 5 6
Setting - either up up either up up

where switches 1, 2 and 3 select the transmission speed to the cassette
and 4, 5 and 6 the receiving speed from the cassette. Switch 7 should
be down to select cassette input. (Up selects TTY input.)

To make 300 Baud TTY available is a little more difficult but
since many acoustic couplers and teletype devices work at this speed it
may be necessary. Transmission is the easiest since only the clock
speed of the transmission side of the UART needs setting and this is
readily achieved by the existing switches on LSW2.

1 2 3
110 Baud el ther up down
300 Baud down down either
1200 Baud up down either
and with the mod above
2400 Baud either up up

Reception cannot be achieved in the same way because the UART
receive clock for tape Is derived from a Phase Lock Loop (PLL). The TTY
input must have a 'hard' clock, as the PLL can not regenerate the clock
from the incoming TTY signal. Therefore, to get different receive
speeds for TTY input the appropriate clock signals must be gathered
from various places and applied to the UART. This may be done by
connecting the required clock from the input side of the transmit speed
selection switches to the external receive clock input (TP5). The most
usual TTY speed required is 300 Baud and the <clock for this may be
picked up from IC32 Pin 4 with LSW2 switch 1 down or from IC31 Pin 9. A
switch will then be required to select between the 2400 Baud cassette
clock (coming from the PLL circuit) and the 300/1200/2400 Baud TTY
clock going into the external receive clock input (TP5).

Happy switching!

Diode

8 ohm

~46-

ZEAP 11-20

HOW TO CONVERT A ZEAP 1.1 FILE TO ZEAP 2.

(The new workspace starts at 2000 HEX).

1. Make a note of the number displayed on the top right of the

screen, when the file is 1ocaded under ZEAP 1.1. Call this
value TTTT.

2. Load the file and copy it to the new location by entering:
I 1B0D 2002 38000

3, Examine the address at 2002 - 2003. Call this LLLL. (Remember v
low order byte is stored first.) L

' Calculate TTTT - LLLL by entering: i
A LLLL TTTT :
and looking at the second value displayed. This gives the
symbol table area. Put this value at 2002 - 2003.

5 Calculate LLLL + E4F5 by entering:
A LLLL E4FS5 :
and looking at the first value displayed. This gives the file
length. Put this value at 2000 - 2001.

6. Enter | 2000 0C80 6 (to store the start of the flle).
7. Load ZEAP 2.0, and execute it by entering:

E 1000 8000 2000
(E DOOO 8000 2000 for the EPROM VERSION).

8. Enter N to exit from ZEAP. i’
9. Enter ! 0C80 2000 6 (to restore the start of the file).
10. Execute ZEAP 2.0 by entering:

E 1003

(E D003 If you have the EPROM version).

11. Check that TTTT + OF4L5 equals the value now displayed on the
top line as Free = XXXX.

WARNING-~8A

It has come to our notice that there is a potential fault on
the Nascom 8 amp PSU. For some reason the '0 volt' rail is not
connected to mains earth, which means that the chassis s 'floating'.
Now this is alright until the nurk assembling the power transistors on
the PSU heatsink leaves out the insuiating washers. Connect it allt up,
and the chassis floats at about 12 volts. Earth the chassis, and
bang !!!! Nascom say this has now been put right. But you have been
warned.

NAS-SYS 3 T4

NAS-SYS 3 - IMPROVED VERSION OF NAS-SYS 1

1. All the keys on the keyboard automatically repeat when held
down. (Not the @ key.) The initial repeat delay and the repeat
speed are adjustable.

2, All routines are interruptable, so that interrupt can be used
while executing NAS-SYS routines.

3. The CRT routine allows data to be output anywhere in memory,
so headings can be output to the top line of the display.

4, The Read command has an optional parameter which allows cassette
tapes to be read into any memory locations,

5. The Tabulate command is enhanced in three ways. Firstly, ASCII
values of the bytes are output as well as the usual hexadecimal
tabulation. Secondly, a fourth parameter can be used to specify the
output of additional values on each line, to allow for printers of
different widths. Thirdly, a fifth parameter allows suppression of
either the hexadecimal output or the ASCII output.

6. All NAS ~SYS routines can be single stepped, which makes it
easier to test a program which uses NAS-SYS routines. By using the
repeat keyboard feature, high speed single stepping is possible.

7. The register display is enhanced so that it shows the two byte
value pointed to by each of the main registers.

8., Output from the Modify command is displaced two characters to the
right, to improve readability.

9. The External (X) command has additional options, and no longer
fails to output nulls., This enables the NULL command in BASIC to
work correctly.

10. There are three new commands. P displays the stored user
program registers. D exXecutes a program at DO00OH and Y executes a
program at BOOOH,

l1l. The cursor blink rate is adjustable.

12, There are three new routines. Repeat keyboard scan, Output
two spaces, and a new routine which can execute any other routine.

13. Both on breakpoint and on NMI, control passes through the $NMI
jump before displaying the registers, allowing a program to take
alternative action.

14, The B 0 command turns off the breakpoint completely, so that
with appropriate hardware NAS-SYS can be executed in RAM.

15. Support in NAS-SYS itself for the use of paper tape has been
removed, so there is no longer a Load command and the Tabulate
command does not output a checksum,

-48-

VERY OFFICIAL

To whom it may concern

Last month, in issue 7 of this publication, certain allusions
were made concerning our client Lawrence, hereinafter (3 gns.)
referred to as 'the long-haired Weirdo', and the unpublished
failure of H.M. Police National Computer Unit of no fixed security.
Notwithstanding hereinunder (3 gns. each) any further charge that

may arise from analysis of certain substances taken from our

client at the time of his arrest, viz. 2% kilos of floppies (we
understand these to be similar to uppers, downers, benders and
twisters), we wish to make clear that of the current charge, that s
of obstructing PNCU's operating system in the course of its i
duties, he is INNOCENT because THE SOFTWARE WAS WRITTEN BY
SOMEBODY ELSE quite possibly in the pay of the MAFIA (North
London branch).

Incidentally, our client is not afraid to show his snout; it :
looks like this: | :

Nose

SNouT

Allegations as to its contents may be made to the Editor; the

first correct answer will win a prize.
Goorequill, Goosequill, Goosequill, Gasse-Turbyn
and CGoosequill

Practising Solicitors
Expert Turf Accountants

