

2
n
srranrs GO BUS MEWS vomez .

Page 3 Editorial

Page 4 Letters to the Editor

Page 6 The Interrupt System of the Z80
Page 13 The Dave Hunt Page(s)

Page 19 Classified Ads.

Page 20 Customising your CP/M BIOS

Page 29 Doctor Dark's Diary

Page 35 Book Reviews

Page 37 The Richard Beal Book!

Page 37 Latest News on RP/M

Page 38 RP/M Version 2

Page 40 Review of the MAP 256

Page 44 3YS - the latest story

Page 47 Virtual Disks - are they useless?
Page 49 Review of the EV Beeper
Page 50 A1l about UCSD

Page 54 Random Rumours (& Truths)

Pages 55,56 Advertisements

All material copyright (c¢) 1983 by Interface Data Ltd. No part of this
publication may be reproduced in any form without the prior consent in writing of
the publisher except short excerpts for the purposes of review and duly credited.
The publishers do not necessarily agree with the views expressed by contributors
and assume no reponsibility for errors in reproduction or interpretation in the
subject matter of this magazine or from any results arising therefrom. The Editor
welcomes articles and listings submitted for publication. Material is accepted on
an all rights basis unless otherwise agreed. Published by Interface Data Ltd. and
printed by Excelsior Photoprinting Ltd., High Wycombe.

SUBSCRIPTIONS

——— - —— - -

Annual Rates UK £9 Rest of World Surface £12
Europe £12 Rest of World Air Mail £20

Subscriptions to 'Subscriptions' at the address below.

EDITORIAL

o . 1o o -

Editor : Paul Greenhalgh Associate Editor : David Hunt
Material for consideration to 'The Editor' at the address below.

ADVERTISING

PR ———

Rates on application to 'The Advertising Manager' at the address below.

ADDRESS: 80-BUS News,
Interface Data Ltd.,
18 Woodside Road,
Amersham, Bucks, HP7 OBH.

EDITORIAL

Publishing Deadlines

A1l things being relative and equal, this issue should be the third one
that you have received after fairly accurate two monthly intervals. Having
achieved this amazing regularity, it now becomes possible to start announcing
publishing-schedules. For a start, as you know, we do not have a great army of
staff-writers, in fact we don't have any at all! Consequently we are pleased to
receive articles for consideration at any time, but would prefer it to be well
vefore the end of the second week of each odd month, if there is to be a chance
of getting the article in the next issue.

Potential articles may be submitted in any form, but their relative
chances of pubiication range from disks [any Gemini format (SD, DD or QD) and
many others (Superbrain, Osborne, Xerox, IBM 8" etc - but what are you doing with
one of those!) |, down through tapes [Nascom 2/% or Gemini RP/M formats, or W1
with CUTS}, and then neat typing/handwriting on clean, uncrumpled paper. The
lowest chance of getting something published is obtained by sending in an Nascom
1 format tape, as we can't read those! Crumpled loo paper is a betfer bet!

Advertisers should send in camera ready copy by the end of an odd month,
and should, preferably, book space about one week before that. Rates are
available upon application, but you can be assured, of course, that they are
extremely reasonable! A1l private ads. are free of charge, providing that they
are advertising unwanted hardware/software, and are not for 'commercial gain'.
Ciubs may also send in details of their meetings and activities, and these will
be published free of charge when space permits.

Maintaining Order
I am currently trying to draw up, for publication, a chart showing all of
the 780 I/0 ports occupied by the various 80-BU3/Nasbus products, the aim of
which is %o ensure that there are no clashes. Unforfunately, I am not getting on
very well with it. I have spoken to a variety of manufacturers, all of whom have
promised to send me details, but most of whom haven't. So, if you manufacture, or
are about fo manufacture, an 80-BUS/Nasbus compatible board that uses I/0 ports,
please send me:
1) Details of the standard port assignments.
2) Details of the optional assignments (if any).
3) Does the board support NASTO and DBDR correctly?
Hopefully I will be able to publish a complete I/0 map in the next issue.
Tf it is incomplete I will put in VERY BIG LETTERS the names of the unobliging
companies.

Moving Technology

This Bditorial is brought to you courtesy of Wordstar 3 and a Gemini
Galaxy 3. Wordstar is very much the 'industry de facto standard' CP/M word
processing software. It is, in many ways, nowhere near as easy to sit down in
front of and type away as the 'PEN series (Naspen, Diskpen, Gempen), but I have
been using those for four{?) years now and therefore have gained a certain
understanding of them. Wordstar, on the other hand, has some pretty amazing
features, the least of which must be the highlighting and the underlining
facilities, not fto mention the b-scripts and the Super'scripts, and a massive
host of other features. I'll let you know how I get on. The Galaxy 3, by the way,
is as Galaxy 2 but with a 5.4 MByte Winchester and 800Kbyte floppy, and on this
one there is a Qume Sprint 5 attached. I can't work out how I ever managed to
produce the old INMC mags using a Nascoml!, cassettes, and an arthritic IBM
typewriter. Those were the days......

And finally, talking of moving technology(!), please note our NEW ADDRESS
as given on the opposite page. By the time you get this we should have moved.

LETTERS TO THE EDITOR.

P L e e R T R

Right of Reply.

May I claim the accused's right of reply to Mr Perkins review of HS-1N
(80-BUS Vol. 1, Issue 4)? But first, congratulations on a very thorough piece of
detective work on the hardware and firmware!

We designed HS-1N for our own use in mid 1980, because we had Philips
DCRs and Nascom 2s, and no prospect of 'official’ disk drives. Following a
demonstration of the system at the Scottish Amateur Computer Society in Dec '80,
we were approached by Microspares and we negotiated a license for them to
manufacture the product. We accept now that further work should have been done on
the design at that stage, but we simply passed the prototype designs to
Microspares and let them deal with the PCB, manufacture, manuals etc.

Design bugs:- We had already implemented NASIO on our N2s, and did not
need DBDR, and hence did not implement these on-board in our prototype. They are
implemented on current boards. The conflict between the SIO and Page Mode memory
arose because we received assurance from Nascom in mid 1980 that no existing or
planned product would use ports F8-FF. Current boards are supplied using ports

78_7F .

Firmware bugs:- The bugs in 'Initialise' are real - no excuse is
available, except that if the system is properly used, and no tape 1is removed
without ‘'eXiting', the bugs remain hidden! The criticism of the error handling
routines (which use the HS-1N warm start after issuing the error message) applies
equally to Nascom ROM BASIC when used by machine code calls, but the revised
operating system (HS-1N+) avoids this by using a RAM vector, which can be patched
to divert error routine calls back to a user's program.

I accept the criticisms of the absolute calls to Nas-Sys, and the use of
address 0 +to discard unwanted data. It takes several months of use to be
reasonably sure that there are no major bugs in a system, and in this case
pragmatism defeated the desire to rewrite the program and and purge its
impurities!

ZEAP files were not directly supported simply because we do not use ZEAP,
but the faster but apparently no longer obtainable Z2, which we have patched to
allow direct access %o HS-1N+. Relocation of files as they are loaded is
supported by HS~-1N+, and is an essential feature of HS-Kit, the toolkit for Xtal
BASIC and HS-1N+ which Mr Perkins referred fto in his review. This allows access
to files by name from Xtal BASIC, but the additional code for this is just too
much to Dbe incorporated into a 2K operating system ROM. In our initial
specification we deliberately chose access by number, not by name.

Yours sincerely,
Dr M.D. Hendry, HS Design Litd.,
Linley, East Rd., Cupar, Fife. KY15 4HR.

Pascal facilities and PIO poris

- " - - -~ o~ > "~ U S 41 s 1. S . o S "

Please allow me to comment on some items that cropped up in the Nov/Dec
'82 issue.

Dr. Dark raised a couple of queries with regard to Pascal. He claimed
that Pascal does not have the same simple string-handling facilifies that BASIC

has, giving the example:
A$ = LEFT$(B$,4) + MID$(A$,3,3) + " Wowee!"

In fact, Pascal has these facilities in exactly the same way as BASIC:
they may or may not be provided with the compiler/interpreter as "standard" or
"intrinsic" functions. Most of the Pascal compilers around, of course, are really
only "Tiny" Pascals (i.e. a subset) and many don't even allow the user to define
his/her own data types (the solution suggested by Dr. Dark). The Nascom Pascal,
approved by Lucas Logic, however, does indeed have the relevant functions and is
probably one of the few Tiny Pascals which do.

Most of the Pascal implementations which reproduce, or nearly reproduce,
the full Jensen and Wirth specification will also fling such functions in as
standard intrinsics as a matter of course. In UCSD Pascal, for instance, Dr.
Dark's line of BASIC could be re-writfen as:

astring := concat{copy(bstring,1,4),copy(astring,3,3)," Wowee!");

where astring and bstring (and the functions copy and concat) are STRING types
(equivalent to PACKED ARRAY OF CHAR of dynamic length).

Blsewhere in the same article he attempts %o tackle the problem of
handling integers with a large number of digits. Again, if he had UCSD he would
not have to do it the hard way. UCSD Pascal allows the use of a standard data
type called LONGINTEGER which can be declared to an arbifrary precision up to 36
digits and can then be used with the usual arithmetic operations.

Big H, in the same issue, details his method of wutilising other
"Centronics” signals besides BUSY and /STROBE. However, his PIO Port assignments
are not consistent with existing conventions for BUSY and /STROBE. Both Nascom
and Gemini, I believe, now employ the convention that Port B is used for data and
Port A for control with bit O assigned to BUSY and bit 1 to /STROBE. It would be
helpful if other pioneers could maintain consistency as they progess further into
the jungle!

On my own sysftem I am experimenting with the assignment for Port A:
BIT FUNCTION 1/0?

BUSY I
/STROBE 0
PE (Paper Empty) 1
Not used

Not used

JINIT 0
/AUTO FEED X7 0
/ERROR I

~I VI BN - O

/ERROR, in particular, is assigned to bit 7 so that a simple RLA will enable the
Carry flag to show its status.

Hope this is helpful......

Mike York, London.

The Interrupt System of the Z80 by R. O’Farrell

PN TN B INE NN D N N S PN N 8 RO Bt INE D B P

The interrupt structure of 1the Z80 microprocessor chip is one of the
least understood and at the same time potentially most powerful facilities
provided by this 1i.c. My purpose in writing these notes is to survey the
interrupt structures offered us, to encourage other users to try these out for
themselves.

It should be remarked immediately that it while it is relatively easy +to
use one interrupt at a time, a complex set up is not easily obtained on a general
purpose machine, although on a dedicated machine such as a process controller it
is possible. It is very likely that a Nascom or Gemini system will be used as a
development system, to develop software for a purpose built dedicated controller.
This possibility underlies the following notes. Whether a dedicated controller
will be used, or the system software of a Nascom/Gemini modified +to support
multiple interrupts is a matter for the individuals concerned, but it is
essential that each interrupt be set up and carefully debugged along the lines we
will examine.

By way of an aside, let me remark that a dedicated confroller is no great
deal. Consider a minimum Z80 system. This could comprise a similar configuration
to that shown in Section 9 of the Mostek manual - a Z80, an EPROM, some RAM and a
PIO. It would also need an oscillator to provide a system clock. A minimum system
of this nature would not need any buffering, and could possibly be expanded with
another PIO or two before that became necessary. Such a system could be wired up
on a prototype board. What would it do? The PI0O would allow it to sample or
switch up to 16 1lines without getting involved in elaborate multiplexing
circuitry. A reasonable assumption might be that it would treat eight of these as
inputs, and the other eight as outputs. An example of what can be achieved in
this way was published in Micropower, Vol 2, No. 1, where it was shown how a
Nascom could control a washing machine. Another example of what a dedicated
system might do is to control a dot matrix printer, such as the IMP or EPSON.

As computer enthusiasts, we are concerned always with the finer points of
Z80 wusage. We have two problems - to get the hardware to work and to get the
software written and debugged. These two problems are complementary and depend to
a certain extent one on the other. In these notes, I will deal only with the
software side of matters and will assume that the hardware is taken for granted
and assumed correct - that all signals are clean, bounce free, and of the correct
voltage levels. This is not always so!

The first interrupt structure on the Z80 is the Non WMaskable Interrupt,
known familiarly as the NMI. Those familiar with the pinouts of the CPU chip will
know that pin 17 is called /NMI. This is an input, negative edge triggered. That
is, the transition from high level (normal condition) to low level tells the CPU
that an NMI is required. The CPU examines the state of this pin at the end of
every instruction, and if the pin is active, then it proceeds to service an NMI.
There are a small number of conditions which will prevent the MWMI being
recognised, and 1'11 mention these to get them out of the way. The first, and not
very likely condition is if WAIT states are continually being requested the
current instruction is prolonged and never reaches an end. In consequence the NMI
test is never reached. Such a condition is hardly likely to arise in serious use
of & WNascom or Gemini, as the dynamic memory would not be refreshed, and the
program lost. It might happen in use of a Z80 based controller, where the machine
was executing Wait states, waiting for a very slow peripheral fo react - said
peripheral having perhaps gone on the blink! The other failure to see an NMI is
if /BUSRQ is active, i.e. if something like a DMA chip has control of the bus.

7

Having got these two exceptions out of the way, let us now look at the
effect of an NMI. When the CPU recognises that the NMI line is active, it
immediately saves the address of the current instruction, performing a call +to
location OO66H. Here, in theory, is +the service subroutine for the NMI
interrupts. This service routine should do whatever is required on an WNMI and
finish with a RETN (RET from NMI) instruction. This RETN instruction behaves like
an ordinary RET instruction in popping the return address off the stack, but also
acts as a signal to the CPU that the NMI routine is finished, and that the
previous status of the normal interrupt structure can be restored. An NMI will
automatically disable any other interrupts, saving the status until its own
service routine is finished. So, if interrupts were enabled before an NMI, they
are enabled afterwards, and contrariwise.

On the Nascom, the NMI is used for a specific purpose, well known to
those of us who are into machine code. This is to provide a Single Step facility.
(On Gemini systems the NMI is uncommitted, and Single Stepping is provided in
software by Gemdebug.) The Nascom Single Step works as follows: on Execution of a
command, a bit is set in Port O. This bit is clocked through a succession of
flipflops, ending up toggling the /NMI pin of the CPU. The CPU immediately jumps
to the service routine, which looks fo see if the instruction executed was an E
or S. If E, the CPU carries on with the next instruction, but if 3, it prints the
register display.

As the Nascom has ROM at location OO066H (unless it is set up to run
CP/M), you might assume that other use of the WMI is out of the question for
Nascom users. Not so! At OO066H is a jump to OC7DH, and this address is in RAM, so
we can patch in here the address of our WMI handler. N2 owners can connect an NMI
switch to their machine, which triggers a monostable to give a nice clean pulse,
normally causing the register display to be printed out. Nt users can get this
with a little modification published in INMC No.2. Its use is for those occasions
when a program locks in a loop due to a programming flaw. Hitting NMISW can find
where this loop is, and speed up debugging. N2 owners can alsc connect an NMI
signal to Bus 1line 21. Zilog suggest that the NMI be used for catastrophic
events, such as a power failure, where big capacitors on the PSU 1lines could
maintain power for a short time after mains failure, long enough to save the data
to disk perhaps. Using it to provide a single step facility will be regarded by
nost Nascom Users as quite satisfactory, but I deal with the NMI specifically
because it is a free interrupt handling method, and when usinge the 780 as the
basis for an intelligent controller of some sort, it might provide an elegant
simplification of the unit. To give you an idea of the potential power of the
WMI, it is the method by which the IMP printer is driven. Within the IMP, an WMI
is caused at regular intervals. The internal CPU (a 780 - what else!) sawitches
the address of the WMI routine around between a number of routines to look after
checking for new data and printing each column of dots.

Now we move on to the 'normal’ interrupts. There are three schemes. These
are called Interrupt Mode O, 1 and 2, and invoked by instructions IM n, where n
is the appropriate number.

Interrupt Mode O is identical to the 8080 interrupt response mode. At the
end of each instruction, the CPU looks at /INT (pin 16). If this line has gone
low, something has requested an interrupt. Note that this line need not be low
when examined. Its status is internally latched and reset when the CPU reads it%t.
The CPU acknowledges this if infterrupts have been enabled by making /M1 and /IORQ
lines go low. The interrupting device is supposed to recognise this signal and to
place the next instruction to be executed on the bus. Wormally this instruction
is a restart, which is a call to one of 8 specific locations, but it can be an
actual three byte call if you wish, and if you can sort out how to do it! While
acknowledging the interrupt, the CPU executes two wait states to allow time for
the peripheral devices to sort out which one has priority. When it accepts an

8

interrupt, the 280 CPU automatically disables interrupts, that is, it won't
accept any more until it is told to. This has the advantage that you can control
where your routines are interrupted. Say for example, that you had a disk unit,
which was driven under interrupt control. Every time it needs data, it interrupts
for it. Some disk units read data every 25uS, and if the data is not accepted in
time by the CPU they report an error. In addition’ o this disk, suppose you have
a RTC which ticks every 1/10 sec. Each tick is signalled by an interrupt, and the
CPU writes the time fo the corner of the screen.

So, you are reading sectors from your disk and your clock dis ticking
away. In the midst of the reading you get another interrupt for a tick, go and
service that, and return to your reading service routine. Unfortunately, your
tick service routine takes some 2 or 3 mS, and when you get back to reading,
you've missed about 100 bytes so your disk reports a bad read. So you try again.
Same story. The only way you can deal with this is to let the CPU disable
interrupts on the first interrupt, and not to reenable them again until the read
is finished. TFair enough - a read is so quick that it won't matter if the clock
on the screen is not updated for a few 1/10s of secs. There is another way to
deal with the problem - interrupt priority. This assigns to each device a certain
priority, and only devices of higher priority than the device under service can
interrupt. We'll come to this in a moment or two. The 8080 interrupt response (1M
0) is automatically invoked after a reset, with interrupts disabled. This mode
allows (using the restarts) eight different interrupt handling routines. It is
possible to make a number of devices share common handing routines, or for the
appropriate routine to be selected for the device by the handler. This means that
the handler has to identify which device has interrupted, which adds to the time
overhead. In S100 systems, which were originally 8080 based, interrupt response
was often obtained by using unintelligent devices. When the peripheral response
was required, they did nothing. Using open collector bus drivers, the effect of
the pull up resistors was to make the bus read as high, so the CPU thought that
there was a byte OFFH on the bus. This meant that RST 38H was most frequently
used. This provoked Zilog into providing Interrupt Mode 1.

IM 1 is similar to the NMI response. On interrupt, the CPU executes a
call %o location 00%8H. This allows only one interrupt handling routine, but has
the advantage of hardware simplicity. In a controller, +there could be two
interrupts, the more important one on the NMI line, and the lesser on IM1. The
lesser interrupt could be disabled by the program at will, and by the NMI
routine. The WMI routine would always take priority. In IM!1, the peripheral
device need not place any byte on the bus. Use of that mode will automatically
get you to location O3%8H on interrupt.

The last interrupt mode of the 780 is IM2. This 1is at once the mnost
interesting and the most baffling interrupt method. What happens is this: in the
I register, the CPU holds the high byte of an address of a table which points to
all the interrupt handling routines. On interrupt acknowledgement, the peripheral
places the low byte of an address on the bus. The CPU reads this byte and Dbuilds
up the address of a line of the table. From this line of the table, it takes the
address of the appropriate interrupt handling routine. The confusion arises
because the address built up by the CPU and peripheral is not the address of the
interrupt handling routine - it is the 1location where the address of the
interrupt handling routine is stored. Further complication is introduced by the
fact that we have to set up the 'I' register. This cannot know the address of the
interrupt service <table otherwise. We also have to tell the peripheral the
appropriate line of the Interrupt Service Table. We must not forget also that we
must construct this table, and all this before we Enable Interrupfts. In addition,
the peripheral, if a Zilog peripheral, is so complex that we have +to spend a
little time letting it kmow just what we want it to do.

9

Using this interrupt mode, which 1s in general known as 'Vectored
Interrupt', we are more or less obliged to use the Z80 family of peripherals to
allow us to avail of the vectoring. It may be possible to use other devices to
the same effect, but this will depend on the device. Zilog make two families of
peripheral devices. Designed as full members of the 780 family are the following:

PI0 giving two 8 bit parallel ports

¢TC giving four counter/timer channels

SI0 offering two serial input/output ports, with high speed
synchronous facilities.

DART a reduced specification SIO, best thought of as an
intelligent UART

DMA offering high speed transfer of data from port/memory to
memory/port, with search facilities.

In addition to these devices, Zilog also offer another family, the 8500
peripheral device family. These devices are specialised microcomputers, which are
set up to be input/output devices of astonishing complexity! I propose to deal
only with the PIO and CTC at present, as these are the only two devices on which
I can claim any experience. The SIO and DART I may be able to deal with in the
future as Gemini have an SIO board in design. [Ed. - using SCCs from the 8500
family, I Ybelieve, not SIOS.] The DMA chip presents problems when using an N1
with Nascom bufferboard, as it becomes necessary to modify the buffer board to
allow the DMA to reach into the 4k block of the standard Nascom.

Let us now park the CPU interrupt handling to one side, and consider
first the PIO. This device offers a number of operating modes. It comprises two 8
bit parallel ports, each with two handshaking or control lines. As normally used,
it appears as a block of four ports, with the data ports A & B, and then the
corresponding control ports CTRLA & CTRLB. On the standard Nascom, this ©block
occupies Ports 4,5,6,7. Port A is number 4 with its control port CTRLA number 6.
The two data ports are Read/Write, the two control ports are Write only. We can
set this device up in a number of operating modes. First of all, we can pick Mode
0, which configures the port as Output, say driving a parallel printer. The two
handshake lines are used here, one from the PIO to indicate that the data is
ready on its output pins, and the other from the peripheral device to say 'Thank
you, I've got that'. Mode 1 sets the port up as Input, with the handshake lines
working in a similar way. These two modes can be set up on ports A or B, but mode
> Qgiffers. Mode 2 sets up port A to handle bidirectional data. As it now needs
two hand shakes, one for in data and one for out data, we steal the handshake
lines from Port B. So Port B can only be set to Mode 3 if port A is in Mode 2.
Either or both ports can be set to mode 3 at any time - it is not necessary to
have a port in Mode 2. Mode three is the Bit Mode. It allows the eight lines from
the Port to be configured as any combination of Input and Output lines you
require. As well, we may instruct the port to interrupt on simple logical
combination (AND or OR) of some of these lines. We don't have fo use them all for
the interrupt, and can also define whether they should cause an interrupt when
high or when low. There is one restriction - all interrupting lines must be at
the same level.

On first introduction setting the PIO up is so complex, that an example
is perhaps the best way to demonstrate. We will set the PIO up to its four modes
by way of example.

On power up, the PIO enters a reset state. This means that the internal
structures of the PIO are all set to zero, or neutral conditions, as appropriate.
We unfortunately cannot get this effect by hitting System Reset on Nis, as the
PIO0 hadn't enough pins to allow for this. Instead, the PIO designers provided
that a reset would be signalled if the PIO received an /M1 signal without /RD or
/IORQ. To obtain this signal, it is necessary for N1 owners to make a small

10

modification involving one gate, detailed in INMC no 2. This mod. has been
implemented on Nascom 2, Gemini GM811 and 813, and both the Nascom and Gemini I/0
boards. When in a reset state, the PIO remains that way until instructed

otherwise.

We instruct it otherwise by sending it a Control Word, and in some cases
the necessary further commands, all of which we write to the Control Port. First,
we load the Interrupt vector, which is indicated by having the LSB zero, i.e., it
must starft on an even boundary. You will remember that this is the least byte of
the address of the inferrupt service table. The high byte is supplied by the I
register of *he CPU. Now, we select an operating mode. This is built up of two
parts:

MIMOxx1 1T 11

The 1111 indicates that this is the mode word. The M1 MO values differ according
to the Mode, and the x x are don't care values. The mode is easy:

Output = O { in binary 0 O Modeword O = OFH
Input =1 in binary C 1 Modeword 1 = 4FH
Bidir =2 { in binary 1 O Modeword 2 = 8FH
Bit =3 { in binary 1 1 |} Modeword 3 = OCFH

When Mode O is selected, the data byte written to the port is enabled onto the
output 1lines, and the Ready handshake line goes high to let the peripheral know
that the data is available. This signal remains until the peripheral handshakes.
On the handshake, the PI0 will cause an interrupt, if that has been enabled, to
indicate that the next byte of output data is required.

Mode 1 is the Input mode. To start the handshake operation, the CPU has to
perform a Read from the PIO. This empties the Input buffer, and sets the Ready
line to let fhe peripheral know that +the CPU is 1listening out for it. The
peripheral 1loads +the data onto the input register, and strobes the handshake
line. This causes an interrupt, if enabled, and turns off the Ready signal. Note
that if your peripheral is smart enough, the Ready line can be ignored, provided
that you are careful not to load data too quickly.

Mode 2 is the bidirectional mode. This uses all four handshake lines, so that it
is only possible on Port A. Port A handshake lines are used for Output control
and Port B for input control.There is a difference from Mode O. In Mode O, the
data is on the Port output lines, and the Ready line (A RDY) is high. In Mode 2,
A RDY goes high, but doesn't put the data on the lines until the strobe line goes
active.

Mode 3 is the mode we use most often. It uses no handshake signals, and hence can
be of use to control a number of unrelated events, such as switching sections of
a machine on and off, and reading status of input lines. When we have selected
Mode 3, we must then send a control word to the Control Port to signal which
lines are input and which output. This is easy to remember, as 1s are In and Os
are Out. During mode 3 operation, data can be read from or written to the port at
any stage, with restrictions only when Port A is in mode 2 and Port B in mode 3.
When reading a mode 3 port, the data returned is the values of the lines defined
as inputs plus the values currently being output on the output lines.

To enable the interrupts, we must write an Interrupt Control Word to each
port. This has the following format:

EI &/. H/LM O 1 1 1

11

In this, the LSB 4 bits of 0111 indicate Interrupt Control Word. Bits 4 to 6 are
only used in Mode 3, and Bit 7 enables or disables fthe Port fo interrupt. If Bit
7 = 1, then Interrupts are enabled. If O, then disabled. If an interrupt
condition ocecurs while disabled, the PIO latches it, and interrupts as socon as
Port interrupts are re-enabled. If we don't want this to happen, then we can set
Bit 4 in the Interrupt Control Word to reset the pending interrupt condition.
Rits 4 - 6 are used in Mode 3. If Bit 6 = 1, then selected 1lines are monitored
for AND condition, i.e. they must all be active for interrupts. If bit 7 = O,
then any one of them can be active and cause an interrupt. Bit 5 =1 indicates
that +they should be monitored for High 1level, = 0 for low level. Bit 4 = 1
indicates that the next word sent to the port must define a mask. Only those
lines whose mask bit is O will be monifored for generating an interrupt. To
enable or disable a Port interrupt without modifying the rest of +the Interrupt
Control Word, we write the following word to the port.

Bl xxx0011

Problems have occurred with the PIO's little peculiarities. Disabling interrupts
by writing the above control word to the port is subject to them. For example,
you write the disable control word to the port. As you do so, an inferrupt
occurs. The PI0 generates an interrupt, and the CPU acknowledges it. By then, the
PI0 has deciphered the control word and deactivated the interrupt structure. In
consequence, the PI0O will not place the interrupt vector on the bus at the
appropriate time. The CPU will read such a vector, however. As the bus lines are
not in a well defined state, this wvalue will be spurious, giving rise to
eccentric behaviour of the interrupt structure. The cure for this is to disable
CPU dinterrupts, send the disable control word, and reenable the CPU inferrupis.
Here is the sequence of instructions:

LD A,03H ;Disable word
DI ;Disable CPU
OUT (PIO),A :Disable PIO
EI :Enable CPU

This causes the CPU to ignore any such spurious interrupts while the PIO is
turning its own interrupt structure off.

So much for the actual instructions for setting up the interrupts in the
PI0. Now we have tc consider what fthe Interrupt handling routine is to do.
Obviously, without knowing the precise form of your peripheral, this is something
I can't deal with in vparticular, but there are a few points to draw to your
attention. First of all, an interrupt . automatically disables any further
interrupts - mnot just from the same device, but over the whole Machine, except
for the NMI. It is at your discretion when fo reenable them. This action will
allow higher priority devices to interrupt the service routine currently running.
As a rough rule of thumb, timer and floppy disk interrupts are usually accorded
higher opriority +than simple input/output devices. So, suppose your parallel
printer is connected up to a port, and dinterrupts for more data. Usually a
printer has a buffer within it, and a print rate of 60 - 120 chars per sec. So
long as the printer has about 100 chars in its buffer, it won't need any further
attention for about a second. This means that we could, for example, allow our
CTC to interrupt the printer routine every half second or so with the fime. We
can only interrupt a routine when it is in a safe state, so we need to have saved
any data resulting from the interrupt before permitting another. Reenabling
interrupts is done by executing the EI instruction within the interrupt service
routine. To lock after the problem of signalling to the lower priority device
that the higher priority device that has interrupfed it is finished, and that the
lower priority unit can now continue with its interrupt service, we have to
terminate each interrupt service routine with EI (enable interrupts) if we have
not already used it, and a RETI (RETurn from Interrupt). The EI is not acted upon

12

until one instruction later. This is to allow the RETI to take effect. In the
event that it is possible for it to do so, the Interrupt service routine must
clear the interrupt condition before it executes the RETI. Otherwise, a further
interrupt will not show up. Say we interrupt on AO or A1 high. If AOQ goes high
and causes an interrupt, we go to the interrupt service routine. While there, A1
goes high, but the PI0 does not signal for a further interrupt. Why? Its
instructions are to signal for interrupt if AO is high OR A1 is high (or both).
This means that the internal flag for an interrupt is set and remains set until
the RETI. The service routine should clear A0 (if it doesn't clear itself
automatically), so that on the RETI instruction, the condition +that caused the
interrupt has gone false. If after the RETI the interrupt condition is again
present - having gone false - then a new interrupt is signaled. If the interrupt
condition has not cleared, for whatever reason, the PIO knows that it has
signaled for an interrupt for that condition. Remember that the PIO is smart, but
not smart enough to distinguish between different causes of interrupts. Anything
that causes a valid interrupt within the PIO is equal to any other valid
interrupt cause.

The CTC is another interesting chip. It contains four channels, which can
be configured as counters or timers. Each channel can be programmed to count down
the system clock, divided by specified scaling factors, or fo sample transitions
of an external 1line, and interrupt on a specified count. This chip could, for
example, allow you to use the standard Nascom UART so as to give interrupt driven
cassette handling. In certain machines it is used %o give a time of day clock, at
the annoyance of having to enter the %time as part of powerup procedure. I would
not recommend it in such an application. Instead, I'd recommend most strongly a
Real Time Clock, such as already written about in both INMC80 and Micropower. A
use for the CTC that Zilog suggest is to use one of these units to prioritise
four non 780 system interrupts. The ready lines from these peripherals are
connected to the four ports of the CTC, and it is configured to react to a count
of one. Then when one of these lines goes active, the Interrupt service routine
proceeds to service the appropriate peripheral, as if it were a Z80 type
peripheral.

Those who read David Parkinson's interesting article on finding and
optimising +the most used sections of code in a program may like to know that it
would be possible to program a CTC to cause regular interrupts to the program for
profiling purposes, if you are SURE that the program does not disable interrupts
at any stage. Alternately, an output from one channel could be made %o cause an
NMI at intervals in lieu of the little circuit he used.

All this sounds very complex - but it does work! Moreover, it works even
if you don't wunderstand why, so long as you do the correct things! What I have
written above is all contained in the device manuals, and in the event of any
difference between what I have written and they state, they should take priority.
I know from my own experience that the interrupts do work, but that it takes a
considerable amount of study and work on them to master them. I append a list of
references which I have found to be of use. I hope they will prove useful to
other Nascom and Gemini users.

References:

"May I Interrupt?", PCW Vol 3, No 6, June 1980, pages 60-63/111
Notes on PIO operation, INMC No. 2, pages 6-8

Understanding the PIO, INMC No. 6, pages 19-20

Using the PIO, INMC80 No. 1, pages 24-25

DIY Real Time Clock, 80-Bus News No. 1, Pages 17-24

Mostek (or Zilog) Parallel I/0 Controller Manual

Mostek (or Zilog) Counter Timer Circuit Manual

Washing Machine controls Nascom, Micropower Vol2, No. 1, pages 2-6
The French Connection, Micropower Vol 2, No. 3, pages 2-5 (a RTC circuit!)
Parkinson's Pep-Up, PCW Vol 3, No. 10, October 1980, pages 82-83/123

13
The Dave Hunt Page(s)

O AN N RN N N B NN NE B

Thig issue, the DH bit is going to be a hoch poch of bits and pieces, I
did have a theme, but since thinking of this episodes' theme Paul has landed me
with a 1load of letters and odd bits to chew through. If I actually get round to
my final theme you will see that none of the previous bits fall comfortably into
it so everything is going to get split in to small sections 'a la' Dr. Dark. Gone
also is the turgid writing style of the last three issues. Not fthat anyone has
complained, it's just that I can't write as fast when suffering from an acute
case of 'Esoteric Verbal Grandilogence'. So back comes the chatty nerve Jjarring
style with those apalling puns that I sometimes throw in.

On the software front, that I have been to a lesser or greater extent
involved in, are two interesting developments. Firstly, Richard, having recovered
from his holiday on some exotic island, returned refreshed and brimming with new
ideas. Those devotees of his versatile SYS overlay BIOS program should note that
it has been subject to some Frankenstien type surgery and a new monster saw
daylight sometime around the end of January. This is based on an idea that has
plagued production CP/Ms because of the number of permutations of soft-/hard-ware
configurations available. This has led to a number of different versions of CP/Y
for sale for Nascom, Gemini and Nascom/Gemini hybrids, and an even larger number
of permutations not catered for. Richard hopes to have solved virtually all
permutation problems between Nascom and Gemini CP/M machines in one fell swoop,
throwing in hard disk and 8" compatibility into the bargain. All this in addition
to handling a virtual disk option using either Nascom 48K, Gemini 64K or MAP 256K
RAM cards. Those with 48 +t.p.i. drives will also be ‘able to enjoy full
compatibility with SuperBrain and 1limited compatibility with Cromenco, RML,
Osbourne and Xerox.

The second development is a major redesign of DISKPEN/GEMPEN, amongst
other things making versions available for SuperBrain and the Mimi. The whole
thing has been redesigned internally, although preserving the existing way in
whieh it works and the main command keys. Peter has been busy on the major
extension to allow 'PEN to handle overlay files internally, and to provide access
to all the major internal routines through a jump table. This started out as the
experimental addition of a HELP facility, where the HELP text would be overlayed
onto the screen, but took on a whole different light as soon as it was realised
that if space was allowed for help overlays, the space could also be allocated to
other things. One of the problems with 'PEN has been the lack of a DESPOOL type
facility where 'PEN would background print a file whilst another was being fyped.
Personally I can't stand the noise of the printer running whilst I'm typing, but
other people seem to think this important. Some of the other features envisaged
are to incorporate my little MULTIFORMAT multiple column printing utility which
is ideal for price lists etc; overlays for the use of true proportional printing
daisy wheel printers such as the Qume and Diablo; multiple index facilities; and
a whole lot more. How many of the proposed overlays will see the 1light of day
remains to be seen. The list grows longer daily. The new 'PEN manual (which I
have yet to write) will contain all the competent machine code programmer will
require to write his own overlays, so when the new 'PEN becomes available,
sometime March - April, I rather hope that people will start to write and publish
their own overlays. Remember that a major part of the philosophy of '"PEN has been
that it is cheap, and with that is mind, upgrade 'PENs with a modest assortment
of overlays will be available at a charge of £10.00 - £15.00 on production of the
original disk. This upgrade will be available from Henry's and Amersham Computer
Centre, and other Microvalue dealers should they wish to participate.

So on to the pile of letters and odds and sods which I have been given.
Some have 1listings, and as our policy is to pay per page printed, and that
listings represent a lot of empty space, we have taken to squashing listings from
AL to A5 getting two pages onto one. So as to allow us to fit things together
sensibly when the time comes to print this lot out, all listings have been lumped
together and referred to by the author.

14

The first letter on the pile is from M. L. Trim, of Garswood, Ashton in
Makerfield, Merseyside.

Dear Editor,
This 1is a program written for use with the Gemini G805 disk system. It

was an exercise to help me understand data storage on disk and has proved quite
useful in storing my customers' addresses and phone numbers. However, other
insftructions could be inserted to suit the requirement, for example, a Christmas
card list, general address list, etec.

Line 100 sets up the Nascom array size

Lines 110 - 150 is an INKEY$ routine

The program speaks for itself being a batch of small routines which can
be located in line 840.

Your faithfully, M. L. Trim.

As Mr Trim's listing was supplied as hard copy, I had to type it in and
in the process I couldn't resist the temptation to have a small go at it. I
changed the input routines and the print routines into two subroutines. As this
was written for a version of Rasic T couldn't identify, and therefore couldn't
get my hands on, I haven't tried it. So I hope I haven't mucked it about to the
extent that it does not work.

Next off the pile comes a letter from R.A.C. Treen of Burgess Hill. Some
time ago he wrote to me about networks for Nascom owners. This is something that
could be interesting and Malcolm Alberry of Leighton Buzzard keeps nmuttering to
me about an automatic disk based bulletin board using his Nascom and 8" drives. I
don't know how far Malcolm has persued this, but such a scheme would be very
practical for both disk based and non disk computers. The main trouble is modems
for the 'phone lines. Two or three simple designs costing up to £30.00 have been
published, but as far as T know no-one has looked into these. I wonder if anyone
has played about with modems, and if so could they let us know. Mr. Treen is also
interested in exchanging tapes, so if anyone is interested perhaps they could
drop us a line and we will forward them to Mr. Treen. [Ed. - Perhaps Mr. Treen
could communicate with Dr. Dark; see his pages for details.} Mr. Treen continues
his letter with a thorough endorsement of the Level Nine Adventure program:

---+ On a completely different subject, I purchased, from Level 9, a copy
of the 32X Colossal Aventure recently. (I have a Nascom 2 under NAS-3YS 3 with
32K of user RAM.) My first impressions were that it was superb. The progam comes
on a TDK D46 cassette (I have had ZERO TAPE FRRORS with this brand, YES, ZERO).
The program is recorded at 1200 BAUD twice on side A and once at 300 BAUD on side
B. The program loaded first time. With the program is an eight page A5 Dbooklet.
This contains the scenario for, and explicit and concise instructions on, playing
the game. Included in the game is a stamped addressed envelope for you to request
your free clue [a novel way of ensuring program registration - DH}.

The game itself is the standard mainframe adventure with of course some
modifications. The end game (which I have not yet reached) is supposed to contain
70 rooms instead of the usual 2. I have been prlaying the game for about 15 hours
in all and my highest score is still only 165 out of a possible 1100. If you
liked the mainframe adventure then you'll 1like this. If you haven't played
Adventure, then I suggest you do. See the ads in the April - June 80BUS News, I
consider it well worth the money.

P.S5. Does anyone know how to open the clam
Yours sincerely, R.A.C. Treen

And, so on to Robert Wood of Cardiff who has sent two small and simple
routines:
Dear Editor,

Readers might like to try the little routine listed below, which could be
called 'Nascom Advertising Display'. It is a neat display whereby a message
travels across the screen, descending line by line until it reaches the bottom,
then there is a flurry of multiple displays. The message then goes to the top
line and the next message starts. It is useful as an eyecatcher and can be left
running if line 120 is included as this will repeat the whole series of messages.

15

Program One, as it is entitled has one or two points to be noted:
1) The quotes must be included in the DATA statements.
2) Leave a space between the the quotes and the firsft word of the statement. (Try
without and see what happens.)
3) The variable on line 40 must change with the number of DATA statements. (e.g.
with seven DATA statements, line 40 would be FOR I=1 TO 7)

Program Two highlights the neat INKEY$ routine in the FExtension Basic
reviewed in 80BUS News; it displays the decimal equivalent of the ASCII code of
any key pressed, including graphics.

Your sincerely, Robert Wood.

The next one is easy, from David Hicks at Girton College, Cambridge. He
wants to know what the 'well published' mod for converting the Nascom 2 screen to
16 TV 1lines 1is, as it doesn't seem to have been published in anything he has
read. Well, there are two answers, the first is simple and crude but works, and
that is to whip pin X of ICYY out of its socket. [Bd. - Really useful Dave!! I
think ¥=1, Y¥=53%.]| The second solution was complicated and as I have forgotten
where T read it, I'11 gzloss over it. [Ed. - chicken!}

D. W. Edgar of Greenock, Renfrewshire, has noted that people always seen
to be moaning in various magazines about the tape loading of virtuaily all home
computers. He recommends the Binatone Piper Mini Cassette recorder as providing
1007 reliability with his Nascom. As the Binatone is only priced at £15.99, it
should appeal to all Scotsmen. Personally, I have used a wide variety of cassette
recorders over a vperiod of years and have found it difficult to fault any of
them. The cheapest was a Pye Mains/battery model that cost £12.95, The most
expensive (and noticeably the least mechanically reliable) was a Tandy CTR80 at
about £40.00. The Pye is still in daily use in the shop after two and a half
vears, the Tandy was consigned to the bin about a year ago after spending months
back at Tandy's under warrantyv. The Tandy worked all right, it was simply that
bits kept falliing off it. In any event, almost without exception, all tape
recorders we have tried have produced as near to 1009 reliability as it is
practical to achieve. The tape used, ah, now that's a different matter. In the
situation that we are in, we have tried most makes of tape and have noted that
'el cheapo' ‘tape 1is no good at all. We also noted that certain tape recorders
were fussy about certain brands of tape. The one shining example which would go
with almost any tape recorder was TDK D46 or D60, followed closely by Scotch
computer tapes. Some of the special computer grade C10's we purchased were
useless. So I endorse Mr Treen's recommendation and use TDK.

Bill Ratecliffe wants fto know if there are any books on programming
techniques for fthe MNicrosoft PRasic as he says, "My program organisation is
chaotically out of control and I need help". Well this one is a 1ot harder +to
answer, as sorting programs into a sensible order is a cross between discipline
and sensible forward planning, both topics I am the last person to ask about.
Most of my Basic programs end up as one hell of a mess, and the only person who
understands them is myself (and then only for a short while after I've written
them). What I do is to write the program and make it work. Then, if it's for
publication I decide what it was I set out to achieve, and jot down the order of
the main routines. Then an ASCII dump of the Basic program is puft back into my
DISKPEN and a 'scissors and paste job' performed, pulling all the common bits
together and commenting <them. The whole lot is then renumbered using the 'find
and change command' starting from the top. A very messy process of program
writing, and not to be encouraged. Perhaps we should follow Dr Dark's and Rory's
exhortations and both learn Pascal.

T have had one entry in my 'Save a Byte' competition for my 'Simple
Hangman' program. W. H. Turner of New Malden writes:
Dear Editor,

This is my entry in Dave Hunt's Kiddies Guide competition. I am an old
byte-parer from way back so what an opporfunity this is Wherever there is a

16

CALL followed by a RET, both can be replaced by a JP (saving one byte) or better
still a JR (saving two bytes). This saved two bytes from Hangman, and further,
because I removed a CALL , two bytes of stack space. Further, in CRLF1i, where
CALL SNDTXT and RET have been replaced by JP, this JP can be eliminated
completely (saving another three bytes). The reduction of a CALL - RET sequence
to a JP/JR also works for a relative CALL, but saves nothing with a RST.

If you like my random number generator, I can save even more bytes. This
is based on SEED=((SEED*5)+21) AND 7FH; and produces an even distribution of
numbers between O and 127 (i.e. after 128 CALLs it has produced each number
once). The sequence cannot be described as truly random as the sequence is always
the same so I use the R register to provide the initial seed. The call and return
parameters are identical to those of the one used (i.e. called with A=range, and
returning with A=0 to range-1).

This random number generator uses only 26 Dbytes plus one byte for
workspace and four Dbytes to generate the initial value for seed from the R
register, which must make it one of the shortest random number generators you
have ever seen. The numbers 5 and 21 were chosen to get the best result over the
chosen range and for a different maximum a different pair must be used (I used a
GEC 4070 to do the calculations, but a Nascom could do it as easily).

Yours sincerely, W. H. Turner.

Well Mr. Turner you win, I should have my wrists slapped for not thinking
of that one as it is one of those programming tricks that is lurking at the back
of my mind, and, as you say, it saves space. As to your random routine, well that
deserves the prize alone, so I'll be sending you the fiver.

Well, the DH bit gets written as and when I feel so inclined, as it is
now shortly after Christmas, I am more inclined than usual (perhaps Dr. Dark sent
me some of that West Country gut rot he keeps on about for Christmas). A couple
of issues back I wrote a piece about data transmission by radio, which to my
surprise brought rather more letters than I had expected, strangely all from
radio amateurs. This has identified a new area of the 80BUS readership for me. On
the basis that I had about half a dozen letters on that one +topic, and that
normally anything else only prompts two or three, I can only judge that radio
amateurs form a substantial part of the readership, or, alternatively, that they
are a vociferous minority. Since that article, the Home Office have seen fit to
issue my licence and I have since discovered (by using my radio) that a lot of
radio amateurs are also equally knowledgeable about computers, and that a fair
number own Sinclair Z¥81s (never mind, they'll learn), Nascoms and Geminis.

All this preamble is a way of getting round to my theme for the next
issue or so, that of databases, Mbasic and disks. You see, I have written a radio
log keeping program, which apart from serving its designed purpose, has taught me
an awful lot about the way fto tackle large programs in Basic and something about
how to handle small databases. "All right", I hear you say, "What about
databases, I'm not interested in keeping a log book so what use is it +to me?".
"Well", I reply, "The princples are the same whether you're running a log book or
keeping a running inventory of the freezer (just in case large mice are
persistently running off with next weeks Sunday joint)."

Now what is a "DATABASE'. Well it's a file stored on tape or disk which
contains the data you intend to work with, or to modify, or to delete, or what
have you. The database has been so constructed as to allow easy access to the
various individual parts of which it is composed. 0k? Not really, that sentence
is written in the pseudo technical double talk you see in some manuals. Imagine
your cheque book, it's a book isn't it, odd shape for reading, but a book none
the less. Let's call that an empty database, it's empty because nothing has been
written on the cheques, and it's the writing on the cheques we are interested in
not the cheques themselves. Now the cheque book has a number of individual pages,
each unique by merit of the serial number stamped on the bottom. Let's call this
an empty record, again, empty because it's what's written on the cheque that
matters. Now congsider the cheque itself. It has a line for the payee, a couple of
lines for the amount in writing, and a box for the amount in figures (a different
form of the same data), it also has a line for your autograph and another for the

17

date. Each item, the amount, your autograph, etc, are assigned a specific ©place
on the cheque. The bank gets cross if you put the wrong data in the wrong slots.
So lets call the slots for your autograph, the payee, etc, the data fields
because that is where the data is to go.

I hope that's tidied up some definitions for you. A database is a chunk
(large or small) of data. The database is composed of individual records each
numbered in some way so they may be identified. FEach record has one or more
fields, each assigned to a specific purpose in storing the data, quantity, date,
item number, etc. The data base should be given a name, even if it's something
uninspired 1ike 'DATABASE'. The records would normally be numbered, and each
field within a record would probably have a name, such as QTY for gquantity, or
ITEM for guess what. It helps if the field names are appropriate to the field
use.

Now databases can come in many forms, and one of the most commonly sought
after (but least commonly used) is the implimentation for the smaller machine,
something 1like a 16K Nascom without disks for instance. Let's take a fairly
typical database, a name, address and telephone list. Now I've found from bitter
experience that this requires at least 6 fields per record, four fields of 25
characters and two fields of 10 to 12 characters. Well one thing is certain, a
16K machine isn't going to hold much data, as even at best using string arrays
for the fields, the limitation is going to be the memory space available for
those arrays. Let's be generous, lets's say the program to handle the database is
no more than 4K long, then that leaves 12K available as string space. Now the way
Microsoft Basic works is that it sets up a pointer to each string, which is, if I
remember rightly, five bytes per string, so each field is going to have a five
byte overhead for starters. So our name and address database is going to be about
150 characters per field. So we have room for about 85 names and addresses in the
database before we run out of space. This is plenty big enough for the home user,
but then the home user isn't going to wait a couple of minutes loading up the
data from tape just to look up Fred's phone number. Far easier to look it up on
the jotfer by the phone. This is ignoring the difficulty of saving strings as
data on a Nascom in any event. String saving has been hammered to death in past
issues of INMC and INMC80 so I'm not going to waste time detailing them here.

0f course, there are ways of compressing the data, string compression
where the data is shrunk arithmetically to reduce its size. Three characters into
two is a typical compression ratio, or even 50% where lower case characters are
converted to upper. Another way is 'dynamic' allocation of fields where empty
fields are shuffled so that more space is available from the unallocated space.
The Nascom version of the Microsoft Basic does this anyway when string space is
getting tight. Have you ever noticed the Basic 'hang' for a few seconds, well
that's when it's doing its garbage collection and re-allocating the string space.
Whatever method is wused for compressing data, this is done at the expense of
program space, and what is gained on the swings is lost on the roundabouts, so
the nett gain is usually ftrivial.

So what is the answer, well I'm afraid disks is (bad grammar, disks are)
the answer, or of course oodles of RAM and some hairy software to get at it. That
is, if anyone is intending to use a database seriously. With disk, access is
slower +than in RAM, but at least with sensible organisation at least the whole
thing becomes feasible and the cost is not too astronomical when looked at in
terms of price per bit saved. If on the other hand the intention is to simply
provide a simple telephone numbers program, then a 16K machine is entirely
adequate provided you can wait whilst the tape loads.

So I did get round to my topic after all, next issue I'll be rabbitting
on about how databases could be organised, starting from humble beginnings with a
gsimple program for the Nascom. For those ftoo impatient +to wait for the next
issue, go and get yourself some disks and get hold of Mike Hessey's MANOR
program. It's well worth a look at and it's simple to use.

Time and space preclude any more, so, that's all folks, until next time,
that is.

18

N¥NLEY ove L

LOIYHEN * (I°0)$VE, . ININD * 9 Ok t=P HOd 02
(1*0)$v¢, . I INING OZ2)

8801ppe pug sweu jurid 0} suUTINCIGRS KEH 0124
WHH 0021

NENLEE 0611

(19)gy¢, suoudetes pue,IndNI 0811
(1'G)$Yt,.G =861pDPR DUB, INANI OL1}
(I'V)$v!,v s®eIpPE PUB, ININI 094}
(1°¢)$yi,¢ sso1pPR DPUB, ININI OGL}
(I'2)¢vi.z sso1ppe pum,IndNI OVil
(I%1)gvi, | s801ppE DUB, ININI 0%}

NEAZEY ¢ NT=1 NEHL ,0.=(1'0)$V 4I 021l
(1°0)$Y INdNI @ ,euwu €, I8WOLSN),INI¥L OlL}
indut sseipps pue eweu 368 03 AUTINOIGNG WHY 00y
HEY 0601

0zl 0L09 ¢ ZAOUALIES * NI=I 0801

0Ze} g0S0D : NOHAIES 0LO1

02L 040D * Nl=I
OLO} HHHL . X.=$1 41

0801
0501

¢3¢, 1e3utad oz Ldoo o3 ysTa nok og,ILndNI OVOL

022t 4ns0n 0804

02L 0509 0201

4 IXEN ¢ 0002 OL i=L ¥OL ¢ ,OTTJ U0 jou zdwolsn), ININd OLO}

I LXEN
0£01 NEHEL (I°0)$V=$H &I : NT 0L l=I ¥0d
I LXaN
0£0} NEHE (¥ (I0)$V)$L4uT=3H 41 ¢ NI OL I=1 ¥Od
. $H*, pejeo0T wibIdNT
W 90 01 Iswo3End BI8}L8Y Py 38| m@h@ LANI¥d
STD
lawogsnd putd) HWHEY
Wiy

0% 010D * LA0¥AIES ! ¢ SENIT ¢ 8F HIAIM

I IXEN * 022l €nson

N1 0L t=I HO4

NOUdLES ¢ 0002 SENIT : 642 HIAIK

NT:, 38TT 03 SI9WOLSNO JO I8qUNY,IAANI * ST
4817 JUTId 9 MWEH

HEY

009°0Y6°0L8 OLS 061 0469°062°061 010D N NO
02L NEHL (8<N) + (>N) 41

Z“: mmwﬂﬁdmu uorioung JO Isqunu n&vﬁ@:&D&ZH
LNTEd

G1)EYE LNI¥4
S1)EYL INIud
GL)EYL INT¥d

LJueadoxd puy *g, f(
"L
mevmaa INI¥d
(
(
(

:M@Eowmzv PutTq h:"
L38TT 3uTaig *9,¢4
WJIETT PROT °g, ¢
W38T oa8g ¥, i (41)EVL INIHd
£(61)EVE INTHd
£(61)dVL INTud

[]

LIBTT e8uwyp °¢,
L3817 LetdsTq <2,

W38TT andul -}, f(G1)EVEL INI¥d
S0

BUTIN0I nuUdy KHY

Way

089 0L0D

0zZL NAHL 28=7 41 : (0)USN=Z
JRUoW 0f uIngsl 03 ¥ 891, INI¥d

0001

066
086
0L6
096
046
0¥6
0%6
026
016
006
068
088
OL8
098
048
ov8
088
oc8
oig
008
061
08L
OLL
094
04l
o¥L
0%l
0gL
OiL
0oL
069
089
0L9

Ol €n809 099

H»: m@ﬁ@ﬁu 03 Wit 8YJ JO Iequnu h@»ﬁ&:&b&ZH Om@
3817 oBuwy) ¢ WEAY OF9

WAY 059

afg 029

.« 9£qpoodF pue nok ueyy LJINI¥d 019
$10 009

064 0109 066

I IXEN ¢ 0 ZXEN ¢ (I°0)9V'(4)dHILES ¢ 9 05 O=r HO4 08¢
NT 04 i=I ¥04 * XL °VIVQ, ' (V)MENIES @ (1)S1044S OLSG
18TT PBOT G WAY 095

jrice: el

02L 0L0H * (1)E103ES OFS

I DYEN ¢ 0 IXEN * (I'0)$V(1)LN0LES : 9 OF O=L ¥0d 0¢S
NT OL i=I ¥04 * $°, XL VIVQ, ' (1)MINIES ¢ (1)SIDLHS 026
02L 0L0D 016

024 NEHL ,Z,.=$0 dI 004

$0%, (W/X) ¥sTp uo sa®s 03 USTM 1ok OQ, LAINI 06V
I8TT 0ABS % WHY 08V

HWZY OLY

0S¥y 010D 09%

0ZL NEHI 28=% 41 * (0)¥Sh=7 04¥

L IYAN oYY

((L'3 $L)SAIN) OSVHOL0L A0 * ($I)NET OL =L ¥04 QLY
:SG@E 03 uwanisx 03 H mmehm:a%@ ON@

1 IYEN Ol¥

08¢ 010D 0O¥

02L 050D * NI=I NHHMI 28=2 J4I * (0)USN=7 06¢

OlY OLOD * §T) NEHI L9=2 41 * (0)¥Sn=7 08¢

0=Y & IXEN OLS

((LF3'$L)$AIN)OSY+0L0E AOL * ($I)NET 0L =L ¥04 09¢
:wﬁﬁﬁuﬁov 55 e mmwh&:H%B Omm

0Ly 0109 oS

06 NEHL 2=V &I 0¢¢

02y NAHL NI=I 41 * 1+V=Y 02¢

022} 40S05 04¢

1 05 =1 804 00%

0=V * g10 062

3811 Lvrdsig Zz WIY 08T

WHY 0L2

062 050D 092

0zl NUHL 28=7 41 : (0)HSn=7 062

:5cmE 0} uaingzea 03 ¥ wmmhm:QZHmm O*N

I LXEN 0¢2

Ove NEHL ,0,=(1°0)$v 4I o0z2

0L} 40809 012

1 0L =1 ¥0d 002

:.ymso»mso 103 uwmﬁdmh uo g m&hu &\H 3048 OB:Bszm Om*
sutjnor 48717 judul *} WEY 081

WA oL

02L 0L0D 091

IXEAN £ @400 ¢ £ QVEYM 0G4

Z dELS P4Le O OPeC=1 ¥0d * OVLL*00LY VIVE O¥l
0'9995-0LLL 69902 “9€6 £6="080L* LILLIS YIVA 0C1
CE26LI8~ YIVA 021

L2601 ‘BLI8L 66L9 VIGL 1~ 9CCY 1 480LZ YIVA 01}

002=NT * (002°9)$Y WIC * 0000} 4VETID 001

H

rwixy 7 W £q 1eTpuwy eswq ®YBQ

19

(8)ro11e Tejey of

aqgs L0000 ZANY G100 WOUNYE 1000
ssToqudyg
aNg
hAcE: 60 ,VI00
od d0d W L,6100
e8uwl ofnpou psss ‘ g4y aqy 08,8100
** ut et ¢ 2aNE°oN ar ad ¢ ,9100
*9 jIussy ! 4 qng ieany 06,5100
qdEs Ut }oBy eamg ! v (quas) a1 L0000 28,2100
S3Tq L 2103 Msey ! HiL any L 98,0300
\& aqy pue ¢ HGLY aay 41 90 LEOOO
5 : o'y aay . 18,000
cr £q ¢ v VI8 Lz 40,9000
oy ¢ ¥ VIS8 Lz 40,6000
cc Aydrgrny f LAR) a1 Iy 8000
pees = y ! (auas)‘y a1 L0000 Y& 6000
a8ues eapg ! v'd a1 Ly, ¥000
od HSNd) €000
A BACE: 8) ,2000
018z JT euoq ¢ ¥ O THOANYH g 1000
Pees TBILTUT Y3Ta sowdsdioy ! | SdEq QEES L, 0000
087
LoasuIng cH Cp £gq
LZ1 03 O ®8usl BYy) UT SISQUNU WOPUBI
Butonpoad 103 surinol pesireiousd y
W Guswuon-
HOQNYY oT81%
| qHVd 16302 Z86L AON 62 08-H HOANYH
0¢ 0LOD 04
O(L)EVLILST, H(£)EVL (D) $UHD (1) EVL INTUL OF
0 XEANI 0%
§10 02
» OML WYMDOMd & WEY O
WJATEVIIVAY SEDVADNVT XNV ., VIVQ OL}
WIDNILICH DNIZYWY ., YIVQ 091
WONIQVOT INETIHOXE , VIVD 061
LHTINAHOD HTEVANVIXE ENIL V ,, VIVQ Oofy
WO BETINY HODSYN ,, VIVD 0L
02 010D 024
I IXEN Ol
IC LYEN 001
$Y INI¥d 06
I HEENDS 08

8 0L = ¥0d OL
94 04 I=I ¥04 09

$V qviy

0%

§ 0L I=1 404 OY

HIOLBHY
10
HNO WVHDOUd » WEY

0%
o74
ol

poop 318qoy Aq Lerdeig BursIrIsApy woosey

Hitachi

VDU, software including Pascal compiler, PROM programmer with software. £525.
offers.

connector

or £40 without
card,

£80,
i, boxed with edge

ini,

also Nascom Dbuffer

16K fitted,

card,

A RAM

Teletype model 32 (75 baud, 5 unit). Complete and in very good condition. Offers.

Ron. Basildon (0268) 22254.
Nascom 2 cased with 48K, Nas-Sys 3, Graphics, BASIC Tolkit, Imp printer,

firmware. Tel. Nigel Thomas, Kings Lynn (0533) 673308.
9“

GM803% EPROM board, built and tested, with ZEAP and BASIC.

CLASSIFIED ADS.
Lancing 765714.

Nascom series

051-608-1796.
and manual. Not used. £50.00. Tel. Malcolm Bay, Flitwick (0525) 714205.

Gemini GMB03 EPROM/ROM board. As supplied by Gem

20

UNDERSTANDING CP/M — CUSTOMIZING YOUR CBIOS by C. Bowden

- - -~] - -] - . 2" - - o -~ "~ - - " " . - - -

This article has Dbeen written mainly to try to assist those who would like to
learn more about some of the operations of CP/M or its support utilities. As a
comparative novice myself, I have just struggled through the operations that are
described later and I feel that much of what I have learnt could be of use to
others eager to get more out of their system. At the end of the article is &
summary of the CP/M memory map, and showing the main addresses for CP/M as
supplied by GEMINI for the Nascom, and also as altered to allow space for a 'SYS'
CBIOS. Terms such as CBIOS, BDOS, CCP and so on are also briefly explained. There
are also diagrams in the text, showing the internal details of MOVCPM and the
System Track of the disk.

I had been using CP/M for about two years, first with version 1.4, and then
upgrading fo double density and Version 2.2. During this time the Micro has been
used for Games, Word and Data Processing and some Assembler work but I had not
devoted much time to trying to find out how the FDC Hardware and Software works,
nor to exploring CP/M and its Utilities. I decided that it was time to start. To
begin with I wrote a short program fto read a few sectors off disk directly into
memory in order to learn a bit about disk I/0. This was not too difficult as I
simply ‘pinched' what appeared to be the relevant bits of code from some of the
various CBIOS source files that I had. After a bit of juggling I got it to work
and armed with fthis new but rather vital knowledge I got down to solving the
problem that I had set myself - to replace the original GEMINI CBIOS with a 8YS
CBIOS.

I had several reasons for wanting to change the CBIOS.

1) Primarily to learn how to do it, so as to increase my understanding of what
was happening.

2) To avoid the extra wait required for SYS to load.

3) To clear the 'SYSxx' command from the CP/M Buffer so that some other
program could be Auto-Run. (Although SYS could probably be made to put
another name into the Command Buffer.)

4) The origional CBIOS supplied by GEMINI is very good, but 'SYS' does offer
extra features in certain circumstances, so it can become the preferred
CBIOS.

5) Perhaps rather trivial - a gain of 8K bytes of extra disk space as the
SYSxx.COM file does not need to be on the disk.

I eventually succeeded in my task, but on the way I encountered a number of
difficulties, the solution of which greatly increased my understanding of what
was going on. Part of the solution involved Disassembling SIMON, SYSGEN and the
COLD BOOT LOADER, and I had to alter 'SYS' a little bit as well. During the rest
of +this article I will be referring to certain programs that I used to carry out
the job. To avoid having to repeat multiple names, I will define one suitable
common name for the Jjob:i-

1)PEEK - A DISK UTILITY such as DDISK or REPAIR that allows direct
access to the Disk, with facilities to 'patch' if required.

2)BUG -~ A UTILITY such as DDT, ZSID or GEMDEBRUG.

3)OLDBIOS - the origional CBIOS, as supplied within CP/M by GEMINI.

4)8YS - The new CBIOS. In my case SYS Vn 11.0 at present.

5)MOVOLD - The MOVCPMN or V supplied by GEMINI. (N = version for NASCOM
Screen, and V = version for the IVC Intelligent Video Card).

6)MOVMODV - A version of MOVOLD for the IVC screen modified to reserve
extra room at the top of RAM for a larger BIOS. (See SYS.DOC
as supplied with SYSxxxx.MAC). Use MOVCPMN as the starting
point if NASCOM screen output is required.

TIMOVCPM - Any version of MOVCPM as appropriate.

21

It should be noted that if the origional CBIOS is replaced as described later,
then the resulting CP/M cannot be directly changed in size to suit a different
Memory size. This is not really a problem since most people will probably be
using 64K RAM anyway and will not want to change the size. Once the Software is
set up it does not take long to reconfigure CP/M and insert the new CBIOS in any
case. The method described here is %o put the new BIOS into a copy of CP/M
configured for the RAM size required and which is non relocatsable.

The other way to do the job is fo change the BIOS in MOVCPM.COM, the program that
is wused to alter CP/M to suit changing memory size. To do this requires Software
that most people do not have available, as described below.

_____________ RRERK_
The MOVCPMV/N.COM Program
(VARIABLE)
(e System Track Image ——wweeem- >>
100H S0CH BOCH 1300H 2100H 2C50H XXXXH
[| . | —— [——— [————— [----]
THREXRRRRER] TRE oI EERERER]] REXEERERE]] REREEELRERRLRR]] RRR%]
Relocation Module 1 1 CcCPp BDOS CBIOS BIT MAPS
1

Unused space - app. O1AOH bytes

& bt

COLD BOOT LOADER

Figure 1. The MOVCPM Program and CP/M Image in RAM

The mapping of MOVCPM is shown in Fig. 1, which represents an 'image' of the
program affer it has been loaded into memory. It is dimportant +to note the
following addresses. (Which could be different particularly on other systems.)
Use your BUG program to look at your copy.

1)0100H - Start of MOVCPM Relocation Module

2)0900H - Start of CP/M System Track 'Image'. - 200H bytes that holds the
COLD BOOT LOADER.(1 Sector = 512 bytes decimal.)

%3)OBOOH - Start of CCP. This is 800H bytes long (4 Sectors = 2K decimal.)

4)1300H - Start of BDOS. This is EOOH bytes long. (7 Sectors=3.5K decimal.)

5)2100H - Start of BIOS. This length varies as described later, but cannot
exceed 8 Sectors = 4K decimal on this Disk Systenm.

6)2C50H -~ BIT MAPS. The start address is approximate and it will change
depanding on the version of CP/M and length of the BIOS.

7YXXXXH - End of BIT MAPS. Again a variable address.

(According to CP/M UG UK the first 6 bytes of the BDOS are the Serial number of
CP/M and should be retained intact for programs to Tun.)

The MOVCPM program contains a section to Relocate CP/M, and also a copy of CP/M
'organized' for low memory. The program also contains a module called a BIT MAP.
This contains data which tells the relocation part which BYTES to alter when CP/M
is ‘'moved' to suit a different memory size. If the BIOS is changed then the
relevant part of the BIT MAP must also be changed. An assembler that can create a
.PRL (Page Relocatable) File 1is needed to do the job, so this method is not
available unless such an assembler is to hand.

22

To configure CP/M for a 64K memory system the command MOVMODV 64 * (CR) is
entered. This would generate a 64K system for the IVC card with extra reserved
BIOS space to accomodate 'SYS'. The CBIOS in CP/M would still be OLDBIOS. At this
stage a copy of +this 64K CP/M can be placed on to the System track by using
SYSGEN, or it can be saved to disk as a named file - SAVE 43 CPM64.COM (CR). 1If
you do this and then use a BUG program on the saved copy, it will look identical
to MOVMODV.COM except that address high bytes will be changed. (It is interesting
to try a CPM64 48 * command. It will try to work as if it were a MOVCPM but will
probably give a SYNC ERROR.)

It is now possible to put a copy of this saved file onto a disk using the command
SYSGEN CPM64.COM (CR). (Another very poorly documented feature of SYSGEN is its
ability to read files off disk.) SYSGEN will read in the named file and will
discard the first 800H bytes (100H-8FFH) which includes the relocation part of
MOVMODV. Byte 900H will be put into the first byte of the first sector of +the
TRACK 0, SIDE O of the disk and so on up thro the CCP, BDOS and BICS as shown in
the Track Map. SYSGEN also permits one to READ the SYSTEM off one disk and WRITE
it to another which is usually the most convenient way of moving the system from
disk to disk.

The file CPM64.COM will be used later as the basis for the new CP/M with SYS
CBIOS. It might be thought that at this stage it would only be necessary to
replace the CBIOS in the file with the new one, and the job would be done.
Unfortunately there is much more to do. First SYS must have all of its internal
addresses correctly matched to suit a 64K System. As assembled SYS is a self
relocating program with a Dbase address of 3A00H and it is not amenable to
assembly for a higher address due to the way in which it is configured. The
solution to this problem is easy however. If CPMA4.COM is put onto the Systen
track and 'BOOTED' up, and then the required SYS is 'run up' in the usual way,
there will automatically be a copy of the required SYS in RAM at OEEQOH, with
correct addresses and workspaces initialized. This relocated SYS can be used as
the new BIOS, but first it is necessary to look more closely at some other
problems.

SIMON is the ROM based program that loads the COLD BOOT LOADER that in turn loads
CP/M. In my case SIMON is loaded to RAM at OFOOOH from a paged EPROM card. It can
be overwritten when it's job is done, allowing use of full 64K RAM. (See Note at
end.) On RESET, SIMON is loaded and one of the first jobs it does is to RESET the
IVC card, after which it:-

1)Checks to see if there is a disk in Drive 'A'. If none is found, then SIMON
outputs a 'NO DISK' message.

2)If a disk is found, it checks to see that the disk can be read correctly,
and if not prints a 'READ FRROR' message.

3)If all is well, it reads in the first sector of Track 0 to high RAM and
then copies some of it to RAM at 0000. This part is the COLD BOOT LOADER.
SIMON then checks the validity of the disk by comparing the first two
bytes read with an internal reference. If an error is detected the message
"WRONG DISK' is printed on the screen.

In the event of an error SIMON enters a MONITOR mode and commands can be executed
to Tabulate, Alter Memory and so on. This is extremely useful even on 'good' disk
loads Dbecause, after loading the system and any other program of interest, the
disk can be removed and RESET pressed. The contents of memory can then be
examined without the disturbing effect of the usual BUG program. (The area OFOOOH
- OF400H and around OFCOOH will be overwritten by SIMON)..

23

If no errors occur, SIMON transfers program control to OOCZH, in the COLD BOOT.
The first instruction is a LD HL, ADDR where ADDR is the start address of the CCP
- DBOCH in the case under discussion. The BOOT now reads in more sectors from the
disk, loading the data direct to DBOOH and so on, until the system is all loaded.
Near the end of the BOOT is a JP ADDR!1 instruction, where ADDR1 is the cold stari
address of the CBIOS. (OEEOOH in this case).

(N.B. ADDR and ADDR1 are both relocation addresses, altered by MOVCPM, and they
will vary with system size.)

B L L ———

o o e e o e 20 x 512 bytes = 10K bytes fofalememememcc e >

Sec.No=0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19
[--] [--1--1--1--] [--i--1--1--1--1--1--] [--1--1--1-=l-cle=l--1--]

Sector O = .5K 1 1 1
including 1 1 1
Cold Boot Loader 1 i 1
1 1 1

Sectors 1 - 4 Sectors 5 - 11 Sectors 12 - 19

= 2K CP/M CCP = %,5K RDOS Space for CBIOS

(4% Maximum)

Figure 2. Svstem Track Layout

Fig.2 shows diagramatically how CP/M relates to the Disk. The GEMINI DS/DD system
uses Tracks of 10 sectors on each side of the disk. The tracks of side 0 and side
1 combine to make up one 20 sector track. Fach sector holds 512 bytes (.5K) of
data so the total capacify of one track is 10K bytes. There are 35 +tracks,
numbered from O to 34, so disk capacity is 350K. Track O is reserved for the CP/M
system, and eight sectors (4K) of track 1 are reserved for the Directory. This
leaves 3%6K for wuser programs. Fig. 2 shows that sector O of the system track
holds the COLD BOOT LOADER. The CCP is in sectors 1-4, and the BDOS in sectors
5-11. This leaves a maximum of 8 sectors for the CBIOS.(4K)

A look at the RAM MAP in Fig. 3 shows that CBIOS space is available from OEEQOH
to OFFFFH, equal fo 4.5K. Vhen T assemble SYS the final size is around 4.5K
including workspaces and buffers (and also includes nearly 400 bytes for code
expansion). There is enough of room in RAM for SYS CBIOS but there is a shortfall
of .BK on the disk.

The clue to the solution of this problem lies in the paragraph above. There is no
real need to hold Buffer space on the Disk as it is only used when the system is
running in RAM. There are 512 bytes for a sector byffer and 128 bytes for a
directory buffer located near the start of the Disk Routines in the SYS Source
code. If the System track is examined with a PEEK program, these Buffers appear
as large Dblocks of 00 characters within the BIOS sectors. I moved these two
Buffers by deleting their definition statements at the old position in the 'SYS'
source code, and re-entering them after the CBIOS Workspace at the end of the
Source Code. To make the addresses come right it was also necessary to delete
three assembler directives - ".dephase” at the end of Read Section, just before
the workspace, and the "org pbios+11a0h" and ".phase bios16+11a0h" directives
just at the start of the workspace. The net result is that the operative SYS code
and workspace only ammount to about 3.5K bytes. (The workspace should be held on

24

disk as it contains a certain ammount of initialized data). So there are now app.
400H bytes (1K) of RAM free above SYS. The two Buffers take 280H bytes so
another 180H (384 decimal) bytes of code could be added without pushing the
Buffers off the top end of RAM. I understand that a new SYS with support for the
excellent WMAPBO 256K RAM card and a number of other extra new features might be
available soon. I use one of the MAP RAM Cards as a Virtual Disk and it certainly
speeds things up 2 bit but I miss the extra features of SYS in the support CBIOS.

The disk with CPM64.C0M on its System track can now be put to use. Boot it up and
then 'RUNE UP' +the modified SYS which will self locate over the OLDBICS. (from
OEEOOH in this case). Then use a BUG program to load a saved copy of CPM64.COM
into low memory. (e.g. ZSID CPM64.COM (CR).) Remembering the addresses noted
earlier, copy the active '3SYS' from CP/M in high memory over the old CBIOS
starting at 2100H. Since 4K is the maximum ammount that can be added, move 4K
down to make it easy. (e.g. MEEOO,FR00,2100 (CR).) will copy it down. Use the 'D'
command to check at 2100H to see that data has changed and is the same as the
data at EEOOH. This new CP/M can now be saved. For tidyness though, I first
filled from the end of the workspace to the highest possible end of the CBIOS
with 00's using the 'F' command. This makes it easier to see the end of the code
section when using a PEEK program.

The next step is to enfer GO (CR) followed by SAVE 48 CPMSYS64.COM. Note the
changes. The name has been changed to denote the fixed size and the embedded
'SYS' function. The ammount to be saved has increased from 4% to 48 Pages. The
CBIOS started at 2100H and was 4K long (max) so the top address possible is
3100H. It is thus necessary to save memory from 100H to 3100H which is 48 - 256
byte pages. As previously noted SYSGEN will put memory from 900H upwards onto
disk, but the area 100H - 8FFH must be preserved to be compatible with SYSGEN.

In theory if we put this file on the System Track of a disk and boot, the job
should be done, since all addresses should be correct, and there is enough room
on the disk. So a SYSGEN CPMSYS64.COM (CR) command is issued and the new system
placed on the disk. Then RESET is pressed to try it. DISASTER !! - IT DOES HOT
WORK.

At this stage, I tried a PEEK on the System Track. The BIOS all seemed %o be
there, with code and workspace area ending within a few bytes of the top of
sector 19. That last sector, number 20 though - it should have been all 00's as
the top of the BIOS was filled with 00's before saving it.But here I found ES5's
which is the pattern written to disk during formating so for some reason the
whole of the CPMSYS64.COM file is not being written to disk. This last sector is
not needed at the moment as all of the CBIOS was present on previous sectors, but
T could want it with a new larger 'SYS', so why was it not written. To solve this
one I disassembled SYSGEN. Luckily this is a short Program of about 1K, with a
lot of ASCII text in it, so the task was not too bad. It did not take very long
so find out that it was the sector counting routine that was responsible for the
problem. It was Programmed to only put 19 Sectors to disk. The count only needed
to be 'upped' by one to get all 20 sectors actioned. Locations O1BAH/O1BBH in
my copy were 3E 14H. (LD A,14H). T used my BUG program to set this to 15H, and
saved the altered program as SYSGEN1.COM. The revised program now Reads and
Writes the whole system track.

The SYSGEN mod. did not solve the problem though. I needed to see what was
getting into RAM. I oput the disk back into drive A and RESET. After a few
seconds, I removed the disk, RESET again and used SIMON to explore memory. The
bottom of RAM contained the COLD BOOT, unaltered, so CP/M had obviously not got
going. If it had, the’jump vectors and TOBYTE at the low end of the memory would
have been visible. So I checked high RAM. It soon became apparent that the CBIOS
was missing from FAOOH up. This meant that for some reason two whole sectors had
not been loaded from the system track to the BIOS RAM. Since the vital sector

25

relating to RAM FAOOH to FCOOH was on the disk, the only possible culprit was the
COLD BOOT. This little program is only about 50H bytes long and was soon faken to
pieces and once again a sector counter was found to be responsible. The sector
count byte at address 0009 had been 11H (17 decimal) and SIMON had already loaded
the first sector for a %total of 18. To make the BOOT load the full 20 I set this
byte to 13H wusing a PEEK program on the actual disk. This time, when booted in
drive A, the system worked, and that is nearly the end of the story. The byte at
909H in the CPMSYS64.COM file was changed fto 13H so that all copies of the BOOT
LOADER on the System track would now load the full BIOS.

(A COLD BOOT modified in this way should NOT be used fo load the origional GEMINI
CP/M +to a BRAM address above D80OOH. Since the origional CBIOS is just over 2.5K
long, the GEMINI CP/M would normally start higher in RAM, unless spcifically
configured for say 63K. If loading were fried to the higher address using the
modified BOOT, then the HL register pair, that hold the destination address of
the bytes read in from the disk, would be incremented past OFFFFH, and would
overflow back to OOOOH. The incoming data would load to low RAM, overwriting the
BOOT, and soon cause a CRASH.)

To complete the job only one or fwo fasks remained. Richard Beal had included a
1ittle routine in the Load/Relocate module of SYS which he calls "cinit", which
is there to remove any 'stray' input characters particularly when wusing Virtual
Disk. I have successfully run CPUSYS64 without this routine, as SYS 11 does not
support my MAP RAM card, and I do not use my G802 or any RAM B's as V.Disk. It
might be necessary to include it with a later version of SYS that does support my
MAP RAM though. The other task concerns 'Sign On' messages. The origional CBIOS
messages have been wiped out by the new BIOS, and since the Load/Relocate Module
of SYS is not now used, the comprehensive list of features that SYS displays on
execution has also gone. It is nice o have an impressive 1list of system Software
and Hardware features displayed on Cold Boot, to 'awe' the Plastic Box Brigade,
and some form of Copyright mark should also be shown.

There are several places where it is possible to restore '"signon" message
routines, but "cinit" should be run by the COLD BOOT, or by SIMON after CP/M is
in RAM. Since SIMON is overwritten by CP/M in larger size systems though, the
latter course is not possible directly. There is currently enough room to put
"signon" routines and messages into the BIOS area, but this would take wup space
needed for future expansions of SYS, so the BIOS is not the best choice.

There are app. 400 bytes free in the first disk sector that might be wused for
initialization routines, since +the BOOT is only about 50H bytes long. There is
another 'snag' though. SIMON loads the first disk sector into high memory, and
then does a 'copy' to RAM at OOOOH before making a jump to location OOO0Z2H, to
start the COLD BOOT. The problem is that only 80H bytes are copied from OFC2EH to
O000OH so any text messages would be largely left behind in high memory to be
overwritten by CP/M as it is loaded. This means that to use the free space in the
first sector, it is necessary to modify SIMON so that the whole of the sector is
copied to low memory. The boot could then be altered so that it executes "signon"
and any other initialization routines before jumping to start CP/M.

If however, SIMON is going to be altered, then the EPROM programming effort might
as well be made worth while. TFor convenience my present SIMON and the short
program that copies SIMON to RAM and pages out the EPROM card are all in a 2716
ROM on the card. There is nearly 1K of space free in the 2716. I decided to use
up this free space by adding to and by modifying SIMON. The 'Mods' so far are :-

26

1)I have included '"signon" messages and also a 'Putvid' type of screen
printing routine. These are copied to RAM at O09000H and 'Jumped to' by
the COLD BOOT LOADER after CPMSYS64 has been loaded. If I need routines
like "cinit" or UART initialization, they can be placed in this area of
memory as well. After printing the 'signon' messages the routine Jumps
to BIOS to start CP/M. Any CP/M that contains OLDBIOS, and does not have
a modified COLD BOOT will skip these messages but will display its' own
messages.

2)I have modified the 'TAB' routine so that 16 locations are displayed on
a line, in HEX and ASCII. The HEX is displayed in columns of four bytes.
This mod. is really more useful with the IVC card display as there is
a lot of 'wrap around’' on the NASCOM 48 wide screen, but it can be used.

3)I have also added a few extra bytes so that I can now 'Dump' the 'TAB'
output to my IMP Printer.

4)The 'SIMON' signon messages have been increased to show that a modified
SIMON is in use. A list of Command keys is also displayed as a reminder
of the commands available in SIMON.

It may be necessary in the future to add a 'cinit' routine, and it would also be
possible to include any special initialization routines for UARTS etc. By
reducing the very extensive 'signon' messages, or using an even larger ROM (!)
there is scope for almost any addition, such as direct Memory dump to
cassette/disk, and so on.

N.B. If the initialization routines in middle memory make any calls to CP/M +to
print messages, or to clear characters as "cinit" does, then since CP/M has at
that stage NOT been started, it will be necessary to initialize the ' BDOS Jump '
and TIOBYTE in 1low memory BEFORE making any calls to BDOS otherwise the system
will 'die'.

I hope that this article has been of some help to others who, 1like me want to
learn more about some of the less well documented features and operations of CP/M
systems. (I must apologise however, to the Authors of the various Programs for
the 1liberties that I, an amateur 'hacker', have taken with their Software, and
hope that this will be accepted in the cause of 'Learning'.)

NOTE :- My method of Booting NASSYS and CP/M from EPROM CARD is described in
80BUS NEWS No 1. (N.B. There is an error in the diagram on page 45 of that
article. The wiper of S1A goes to pin 2 of ILKS1, not to pin 3.)

T SN S —— B Lt T epepm——

Appendix 1. The Mapping of CP/M in Memory.

o - " "~ T]__—-—-—— o —— o~ - > o~ " " - -

Above the line, addresses refer to CP/M from MOVMODV

O0COH O100H DBOOH EOOCH E?%OH FFFFH
OOQ0H * 0O100H “ DCOOH ~ E400H * F200H “ FFFFH
1 1 1 1 1
1 1 1 1 1
CP/M Workspace TPA CCP BDOS CBIOS

Below the line, addresses refer to CP/M from MOVOLD

Figure 3. CP/M Memory Addresses for two different CBIOS's, assuming 64K RAM.

I R S e S S o s o o . e o S o S T S S S] 4 " 2 17 7 7> " 1 1 2] 4 2017 T 7 " i~ ol . S Qo I L S 7 S e o i o . T 00

27

The manuals and guides to CP/M should be consulted for more details.

CP/M uses RAM below 100H as a Workspace and Buffer area. Above <the workspace,
starting at 100H is the TRANSIENT PROGRAM AREA (TPA). This is where all programs
other than CP/M reside and operate. The TPA extends up through memory, including
the CCP area of CP/M. In the systems drawn, the TPA will run from 100H to
EOOOH/E400H, which is around 56K or 57K bytes.

The CONSOL COMMAND PROCESSOR (CCP) is the area of CP/¥ that dinteracts with the
user. It supports commands like DIR, REN, TYPE, ERA, etc. and allows selection of
other drives, loading of files etc; When programs are loaded and run, the CCP is
not needed, so the 2K of space that it occupies can be used by programs.

Above the CCP is the BASIC DISK OPERATING SYSTEM (BDOS). The user accesses the
BDOS through the jump at OOO5H, to use the 36 or so Functions that are available
such as Keyboard input, Screen output. Disk read, and so on. The RDOS is Z.5K
long and cannot be overwritten. ‘

The final unit, at the very top of memory is the BASIC INPUT OUTPUT SYSTEM
(BIOS). Often called CBIOS, the C standing for CUSTOMIZED. i.e. altered to
suit.). This part of CP/M is not supplied by DIGITAL RESEARCH, but by the
suppliers of the Computer. The job of the BIOS is to marry together the standard
CCP/BDOS to the thousand and one different Hardwares that have to run CP/M. The
BIOS will therefore vary from computer <to computer. The quality of the BIOS
varies tremendously from system to system, and CP/M can get a bad name because
the BIOS is poor. The various BIOS's available to run on the NASCOM/GEMINT
implementation contain features that are not always common. In some cases they
are almost unique. RICHARD BEAL, the author of NASSYS seems to have made a
speciality of writing a very powerful CBIOS for NASCOM/GEMINI systems that he
calls 'SYS', and this article describes how to replace the origional CBIOS with
'SYS' CBIOS.

1) If you are overwriting the standard BIOS by one of your own you may find that
insufficient space is available for it. The obvious solution to this problem is
to generate a slightly smaller CP/M system to give yourself more room (eg MOVCPM
63 * in a 64k system). However this results in the loss of 1k of memory from the
TPA, which seems quite excessive if you only want an extra 100 bytes. By changing
one byte in the MOVCPM.COM file you can move the memory image of CP/M down (or
up!) in increments of 256 bytes. The byte is at 2%Dh and holds the number of
256-byte pages that MOVCPM.COM adds on to the system it generates +to allow for
workspace area for the BICS. Increasing the current value of this byte by one
will give you an additional 256 bytes of memory, and pro rata.

Remember that the extra memory does not appear out of fresh air, CP/M just moves
down a bit %o allow a little more room for the BIOS.

2) As Mr. Bowden points out, there is little point in saving a large
workspace/buffer area on the system track of the disk, and so all workspace
should be placed at the end of the BIOS so that all the code, (which HAS +to be
saved on the disk), comes first. However an additional saving can be made in the
BIOS memory requirements by realising that certain sections of the code are wused
once only on start-up. A prime example of this is the sign-on message, which only
appears when the system starts up from cold, and then is never seen again. All
the Gemini BIOS's have the sign-on message stored in the area of memory that the
BIOS uses for workspace, as it will be printed before the BIOS actually uses any
of that area as workspace.

28

With the current BIOSs for the Gemini Galaxy and Multiboard systems the idea has
been extended by dincluding all the initialisation code that is only executed
once. This covers items such as PIO initialisation, UART initialisation, printing
the sign-on message, setting up the parameters of the "Memory" drive, setting up
the Winchester disk controller,and so on. This results in a saving of 300+
bytes in the BIOS memory requirements.

[Do this by:

... Bios code...

RET ; End of BIOS code
s

WSPACE:

DRIVE: DEFS 1 3 Current drive
DEFS 512 ; Sector buffer
ete

; end-of-workspace
ORG WSPACE ; Reset assembler origin

COLD: LD SP,STACK
..init code...

SIGNON: DEFB e
END

]

3) SIMON and the boot sector. As pointed out by Mr Bowden the SIMON for the
Nascom loads the boot sector in its entirity fto high memory and then copies the
first 128 bytes down to O. The SIMON for Galaxy/Multiboard reads in the boot
sector directly fto 0, but does not load any data after the first 128 bytes, (the
remaining bytes are discarded without being stored). In each case this was done
deliberately, to ensure that the TPA was left unaltered by the actions of SIMON.

This means that when your next door neighbour fturns on his arc welder and dims
the 1lights of the neighbourhood (crashing your editor) just after you've spent
four hours typing in a program, you can press reset with some degree of hope.
Once CP/M has been reloaded you can then type "SAVE 250 JUNK" (or some such large
number). This will save the entire contents of memory to a disk file "“JUNK".
GEMDEBUG can then be used to reload it, and hopefully you can find your source
somewhere in what was the memory buffer of the editor. Move it down to 100n, add
a few 1Ahs on the end, exit and then do another "SAVE" and you should have your
source file.

In other words I arranged it so that if you are ever forced to press "Reset" you
can get a disk copy of the TPA (as it was when you pressed reset), and hopefully
recover something from it, either a data file, or information of what might have
lead fo the crash. So there was no 'malice aforethought' in ignoring the extra
384 bytes!

(Note GEMDEBUG will load as much of JUNK in as it can. ZSID on +the other hand
will give an 'out-of-memory' message and return to CP/M. In the later case you
can try using the "S" and "Q" commands of PIP to split the file up into smaller
segments).

sy

A

29

Doctor Dark’s Diary — Colour Supplement Edition.

It was getting +to be about time someone brought out a new 80-BUS board
that would astound the plastic box brigade, and suddenly there are two around,
both containing massive amounts of memory. The MAP 80 board is first on the
agenda, simply to make you wonder what the other ome is until you get to the
appropriate page, although I have put a really subtle clue in the heading. You
have seen the advertisements, so you know that the MAP 80 board can hold up to
256K of memory. You may even have seen a hardware review somewhere, that went on
about the sheer amazing blueness of the board. So I am going to write about how I
went about putting mine together, and the software that is supplied for it. Mind
you it is very, very blue...

First of all, being the adventurous type, I ordered the bare printed
circuit board, which costs £42-50. The day after I sent the order, I was
telephoned by MAP 80, who wanted to make sure that T was not trying to use the
board with a Nascom 1. Apparently, this is a combination that does not work! So,
I reassured them that I was now using a Nascom 2, and the board arrived very soon
after. The board is of a high standard, nice solid glass fibre, with the Dblue
solder resist, and the usual silk screening to show where things should be put.
Things are pretty closely packed, as you would expect, since there are fifty four
DIL sockets to fit on the board. With the board were the parts list and
construction instructions. I ordered all the sockets, resistors, capacitors and
most of the TTL chips from Maplin, who managed their usual rapid response. A
couple of the chips needed are not mentioned in the Mapliin catalogue, but can be
obtained from other firms, such as Watford Electronics, or Technomatic. When T
unpacked the sockets, I was surprised to find that they were made from a rather
nice shade of pale blue plastic, instead of the usual black. When these had been
soldered to the blue pecb, the result looked like something from another
dimension, after years of looking at green boards with black sockets! Cost of
components (excluding PCB and RAMs) was under £20, just! The next step, which T
am still saving up for, is to buy the thirty two RAM chips the board can carry.
As these are about £4-50 each, the 256K board can be built for just over £200,
which is a lot cheaper than people with S100 based computers seem to pay for
their boards. The chips have now begun the gradual slide down to a more sensible
price, so it is nice to know that the board will work with Just 2 single row to
start with, as long as you don't connect up the chip select lines for rows that
are not there.

There may well be murmurs of "What on earth can you use it for?" in the
ranks. At first, I wused to find a 1K Nascom 1 big enough. Now my programs are
much bigger, but there is as yet little probability that I will overflow the 64K
mark! No, the magic phrase that made me so keen to get the board was "virtual
disk". [Ed. - see R. Beal's article elsewhere on VDs (oops!).] And you don't have
to mess around modifying CP/M, because MAP 80 will do it for you. They have done
this for me, and the disk has been returned with two new versions of MOVCPM on
it, one for the usual display and one for use if you have an IVC card on your
system. The source code for the revised BIOS is supplied, which 1is a very
sensible approach, enabling even further customisation of the software without
any need to guess what their bit is doing. {Ed. - I wonder how Gemini feel about
other manufacturers modifying their CP/M BIOSs and sending out source listings!
Naughty!] No doubt, soconer or later, I will have time +to have a look how it
works! The CP/M works in the wusual way when there is 64K or less of memory
connected, but when there is more the sign on message will announce that the
virtual disk is available, and give its size, according to the documentation.
Must order some RAM chips... As a bonus, my "old" 64K, GM802, card is not made
redundant by all this. The instructions supplied with the MAP 256 tell you how %o
fix it so that the software will use it as well. Presumably, the effect of +the
modifications is, in part, to change the GM802's paging control port to £FE, from

30

the usual £FF.This would explain why the new BIOS does not interfere with
extension memory boards on pages other than page zero, in the Gemini/RAM B paging
system. Anyway, when I get fthe chips fogether and get it all going, I will have a
nice tidy 64K system with an equally tidy 256K virtual disk. When that is done, I
intend to produce a couple of file updating programs in Pascal, so that I can
produce some sort of "bench-mark", and give you some indication of what sort of
difference these changes make to the speed of operation of the system.

"Pluto review'", he said casually.

T don't know where the money for all this stuff is going to come from,
but I have bought it anyway! Unlike MAP 80, IO Research took quite a while t%o
send my Pluto out, but then they do say that the board is selling like hot cakes.
It is even being sold to the makers of non-80-Bus computers, for use as a
graphics unit on their bizarre (i.e. non 80-Bus) computers. I did try asking for
an OEM discount, but it did no good at-all. I bet you thought all the hardware
manufacturers would be sending out free boards to likely reviewers, in order to
get favourable reviews printed. Well, it may be 1like that in glossy magazine
land, Dbut there ain't no free lunch out here in amateur land, yet! (0f course it
is a hint, Mr Manufacturer, of course it is.)

Anyway. The ‘thoard is of a high standard of construction, and all those
things I would write if I thought you wanted to %be 1told. Come on now chaps!
Anything +that costs +this much is going to be of a high standard, or you would
have heard rumours %to the contrary. What you get is eight inches square, green,
and packed with components., There are three rows of RAM chips, making 192K, an
8088 processor, TTL chips galore, and something with 40 pins whose function is
unknown to me. The latter is probably some sort of video controller chip. [Ed. -
a 6845 CRTC chip, as used on the Gemini IVC and Nascom AVC.] Then there are two
connection plugs at +the outer edge, one with twenty pins, for connection fo a
colour monitor, the other with fifty pins (I think) which is for connection +to
the Pluto Palette, when it appears. Also supplied is a manual. This is somewhat
terse in ifs explanations of quite complicated matters. The pages are not all in
the sequence you expect, there being appendices in the middle of the text. There
are two example programs, one in BASIC, one in assembler, but they don't do a
lot. The most useful thing in the whole slim volume is a table of all fthe control
codes the board accepts, listing all the parameters they need, and what values
they return. Sounds 1like Pascal, doesn't it? A nice touch in the manual is the
way the routines are described, with headings that look like Pascal procedure and
function headings. This has made me start thinking about producing some sort of
software package to interface Hisoft Pascal to the Pluto, along the 1lines of a
little known wuftility called Vortex, that I cobbled together a while ago. This
time I won't have to write a line drawing routine, that's for sure! The manual
also tells you how to connect the board up to a video moniftor, as long as you
know which connection is which on the monitor! No, it isn't always obvious, that
would make 1ife too simple. Just to make 1ife more entertaining, I managed to
wire mine up wrong, but failed to destroy my nice colour monitor. See later
section, for a very relieved review...

As far as your computer 1is concerned, the Pluto 1is Jjust fwo vports
(similar +to the Gemini IVC), normally £AO and £A1, although these addresses can
be changed if you have to. Port £A0 is the status port - if bit 7 is set when the
port is read, then Pluto is ready to receive a command. Writing anything at all
to this port resets Pluto. Port £A1 is the data port, through which you send all
the commands and data needed to produce the pretty pictures, and read data sent
back by Pluto in response to your requests. It might at first seem necessary to
check the status before you send each byte, but this is not so. Once the command
byte has been accepted, and the status port says Pluto is ready, data can be sent
as fast as a 4MHz Z80 is able to do it. This includes the use of the amazing 780
block output instructions.

31

And what sort of instructions are there? Well, lots. For a start, there
are two screens of 640 by 288 dots, and any dot can be individually set to any of
the colours the board produces. So there is a routine to plot a point, given its
coordinates; there's another one to plot a point at a given x~-y displacement from
the current position. This latter routine has two forms, one for distances that
can be expressed in a single byte, and one for longer distances. Then there's the
line drawing routines, also in fthree forms. There are routines to move to a given
point, or by a given displacement. It is possible to read the colour of a pixel,
again wusing absolute or relative coordinates. After all that, you could be
forgiven for thinking I have finished, but not a bit of it! Rectangles can be
filled, or even copied fo another location. Part of one screen can even be copied
onto the other screen.

And each of the operations described above is influenced by two system
variables called WPROT and STYLE. WPROT is used to write protect one or more
colour planes, while STYLE determines whether the new information replaces the
old, or is combined with it in several other possible ways. For instance, the
colour being printed can be exclusive OR'ed with the existing colour of a pixel.
This sort of thing can be used to produce red/green flashing text on a green/red
flashing Ybackground, if that is what +turns you on. Text? But of course! The
standard ASCII character set is catered for, and an 80 column display can be
produced. It must be possible to amend CP/M to use this board as its display
device, somewhat like an amazing IVC, but I may not even try. [Ed. - I know of
someone who did this some ftime ago, and commented on its amazing slowness due to
all the characters being held as dots, and the consequent amount of Memory
ghifting +that has 1o be done when the screen is scrolled. The AVC suffers
similarly (but even worse I believe). He also commented that backspace was not
supported, and so 'cursor left, space, cursor left' has to be issued by the CP/M
BIOS. It's an obvious case of horses for courses - text cards for text, and
colour graphics cards for] You see, there is a marvellous moment when the
ZX81 owner first notices that your computer has two screens. More to the point,
really, 1is the fact +that I have a lot of software that uses the old Nascom
screen, or rather, its relocated equivalent. I don't really think I want %to edit
these articles in colour, unless the magazine is going to change over to using a
colour plotter instead of the daisy wheel, and start looking like 0Z...

As part of the Taunton Computer Club's latest theme program writing game,
I also wrote a thing that draws a picture of a winter scene. In this program, I
made use of the Pluto facility for defining new characters, of any kind and
colour whatsoever; these are referred to as symbols. Once a symbol has been
defined, it can be printed at whatever location is current, just by sending a
single byte out through the data port. This function is impressively fast, as is
the other very useful one I left out above. Referred to as "polyfill", this fills
complex shapes in with colour. I saw someone using their BBC computer the other
day, and their polyfill routine (in BASIC, naturally) took ages, as well as not
always getting into all the corners. Having this sort of facility readily
available will make the rapid development of programs much more easy. I should be
able to do a really nice space invaders in no time...

It is a tremendous shame fthat such a superb lump of hardware is being let
down by the way IO run their business. They take a long time to send things out,
which can be forgiven when a firm is building up its business, and may be running
with less staff than it will have when things level off abit. But they could
easily send out a card to say they have had your order. They don't even bother to
answer all the letters they are sent, and this is unforgivable, when they are
being asked technical questions about the product they have sold you. The only
way to get answers to this sort of question seems to be to ring them up. Their
phone 1is more or less permanently engaged, of course, presumably by people who
want to know why their letters are ignored! I wanted to write about the
additional ROM, which contains even more amagzing facilities like the marvellous
"wallpaper" routine, but after three weeks I am still waiting. Still, it will be
something to write about next time.

32

Change of address.

For the benefit of any of my fans who are still reading this (sid and
Doris Bonkers only - the other two have gone out to rob a bank, so that they can
buy Pluto boards), here is my new address:-

Chris Blackmore,

27 Laburnum Street,
TAUNTON,

Somerset,

TA1 1LB.

And now it is software review time!

programs in one go. The programs are all by Level 9 Computing, of High Wycombe.
As you may have noticed, 96K is three times 32K, and I have been playing three
adventure games, each of nominally 32K size. These run on Nascoms with Nas-Sys
and at least 32K of memory, but they also work on my system, under the control of
my fairly famous MONITOR.COM program. This is because sensible software authors
always use the standard Nas-Sys way of calling the necessary monitor routines,
rather than accessing the screen memory directly. In fairness, I should point out
that the Syrtis adventure also works perfectly on systems with MONITOR.COM
instead of Nas-Sys, which I forgot to mention in my review of their program.
Sorry!

The programs are called "Colossal Adventure", "Adventure Quest" and
"Dungeon Adventure". They are supplied on very good tape, which loads with no
bother, apart from the volume being so high that it endangered the VU meter
needles on my tape machine! Documentation is provided with each game in the form
of a small book. Also incliuded is a stamped addressed envelope which you can use
to request a free hint. This is a fine idea, although they warn that if you ask
for too much the replies may be somewhat cryptic.

The first of the three games is a fairly standard implementation of the
original cave adventure, in which you have to fetch all the treasure out of
Colossal Cave, and bring it back to the hut in the woods. This is almost the same
in its +topography as the Syrtis version, with the exception that a few objects
are in different places, and there is a picnic area in +the woods that can be
surprisingly dangerous, if you behave anti-socially! The program does not give as
full a description of some places as the Syrtis one, and does not ask you if you
want hints. The authors say that this gives them room for an extra 70 locations
in the cave, which they refer to as the "end-game", and it could well be so, if
only I could find them! I still don't know how to procede beyond the infuriating
"Plover Room" without falling down a pit. When I eventually resorted to the
practice of copying the program into the screen memory, fto see what words it
would let me use, I found that about 2K at the end consisted of the "a-code"
source from which the program was compiled. There are more spelling errors in
this program than in the Syrtis one, although they may well have been corrected
in later versions.

"Adventure Quest” starts out in the same forest as the previous program,
and you can even find the grate that used to lead to Colossal Cave, but you can
no longer get down there. The idea this time is fto find a nasty character calied
Agaliarept (etymology obscure, as they say in dictionaries!) and do him in. Of
course, it just isn't that simple; you can't even begin to think about attacking
him without doing a lot of exploring, and finding the necessary weapons. I am
still getting a lot of fun out of this program, and seem to have found about a
third of the locations there are supposed to be. I have had considerable problems
with a model lung-fish that lurks in one location, and think I have found an
original way to cheat the giant sand worms that trundle around in the desert. So
far, I am still getting rotten scores, and am nowhere near beating Agawhatsit. I
have even resorted +to drawing maps, which purists amongst the adventuring
fraternity would no doubt frown on, unless the program said that they were
carrying a pencil and paper!

33

In the third game, it is assumed that you have defeated the bad guy of
"Adventure Quest”, and have decided to go and liberate all his treasure. Your
plans go badly wrong when all your weapons and equipment are stolen, and the game
starts with you waking on a mud bank by a river. So far, this seems a very
difficult game to crack, as almost everything seems able to kill you, while you
have no weapons to do likewise to them. On the other hand, this could well be
just the result of my lack of experience with this game, and it is true that the
satisfaction of cracking these things is directly proportional %o the difficulty
experienced on the way. Perhaps when I find a way to defeat the "hideous yellow
bird" I will do better? The program accepts the word "Buzby" without question,
which makes me wonder what they have against him...

This sort of thing is of course very much a matter of personal taste: T
read all the hardware oriented science fiction I have time for, and never Tbother
with "sword and sorcery" books at all. These programs are a taste that T seem to
have acquired in spite of myself, much to my own surprise. It is fortunate that
you can save the status quo on tape for later reloading, or I would get even less
sleep. Have a go with one, and if you hate it, never mind. If you find it starts
to get to you, then my recommendation is to get the Syrtis adventure and the
second and third of the two Level 9 adventures. That will keep you off the
streets for ages. As T have failed to mention, they are very reasonably priced,
especially when you consider just how long they will keep you busy. They are
definitely not the thing for people who like to hammer the space bar until all
the funny shaped blobs have been destroyed...

The program library is dead! Long live...

Well, I have ordered a copy of the source code of the famous Lollypop
Lady Trainer, in the hope that it will help me to write a fun program for the
Pluto. Lots of red, when the cars hit the dear little kiddies...

The reason why the library is no more, we were told, was that all that
paper took up a 1ot of space. That makes sense. The computer revolution is
supposed to do away with all this tree murder, after all. So T put on my thinking
cap, and I think T have thought of something to put in the place of the old paper
library. See what you think, bearing in mind that the proposals are in vrather
embryonic form, and that they are addressed mainly to disk users. There is no
reason at all why tape users should not do a similar thing, of course.

"The Circle of Iron", or some such corny name, would consist of a group
of users posting a disk around in a circle, adding their programs to it, and
copying any of the ones already on it that they wanted. Let us be clear from the
start, these will be your programs, not borrowed ones! When a disk arrives at
your abode, what do you do? Well, first you wipe out anything you put on it the
last time you saw it. Then you look at what is new, and help yourself to any you
like. Put your new files on the disk, and put it back in the post. Much easier
than all that bother with paper, I am sure you will agree.

So now we get a bit technical. There are a variety of disk systems, to
understate things rather. There will need to be a separate circle for each of
them. This will mean one for each of the following:-

(a) Gemini single density - Henelec FDC + 48TPI drives (e.g. GMSO5)

(b) Gemini double density - GM809/GM829 + 48TPI drives (e.g. GM815)

(c) Gemini quad density - GMB09/GM829 + 96TPI drives (e.g. GM825/Galaxy/Quantum)
(d) Nascom disk systems (yes, they do read this!)

(e) Whatever I have forgotten....

Now you will have to stir yourselves. If you want to join in the fun, I
want you to write to me, saying what sort of systenm you have. I am NOT going to
organise the whole thing, but am willing to do the donkey work of setting up the
Gemini double density loop. So if you use some other system, and are willing to
start up their loop, let me know. Now, as everyone knows, apathy will do its evil
work, and none of you will write. Prove me wrong, please!

34

Another thought has just struck! (Two in one day!) Anyone who knows how
to transfer programs between Nascom disk systems and Gemini disk systems using
tape will have spotted this. A program that works on one CP/M system ought to
have been written so that it will work on another CP/M system. So perhaps there
will be a figure eight amongst the circles. Anyway, disk users, please write to
me: tape users, if you want a similar system, let me know. The first tape user to
write gets to organise the fun on behalf of the others. If this idea can be made
to work, we'll be light years ahead of the plastic box brigade (no, this is not a
reference to the Nascom 3, that is a nice box!) as usual.

Back to hardware! The Microvitec 14" monitor.

You need something like this if you are going to use a Pluto. The cost of
a monitor capable of displaying the full 640 dots across the screen is
phenomenal, and if you are mnot rich, you will just have to compromise a bit.
licrovitec do make a high resolution monitor that can cope, but I could not get
the necessary finance, so I bought their 14 inch RGB nearly as high resolution
monitor. This is the one you see on the BBC's Computer Program, in a nice steel
case. The display quality is excellent, but is not quite enough for 80 columns of
text in colour. Please note that the text CAN be read easily enough, it is just a
fraction +this side of perfect, not all furry the way it would be on the average
television, after going through a modulator and a tuner. The monitor is built in
Bradford, but the +tube was made in a country where it is said that they can't
write software like ours. (Come to that, thay make some rather Mickey Mouse
computers, as well.) Microvitec have recently won one of the awards to industry,
according %o my Sunday paper, and deserve it. This unit is excellent value. It is
available from many dealers, and the price varies, so you should shop around. The
catch, and there has to be one, is that if you buy cheap, the dealer expects to
be able to get away with giving almost no after sales service. I got mine from a
firm called Microage, who are nothing to do with Microvitec, I hasten to add, and
when I wrote and asked them a question, they sent my letter back with the words
"Sorry can't help" scrawled on the bottom of the page. Not good enough, Microage.

Anyway, when you write to ask Microvitec how to make adjustments, so that
as few as possible of your expensive pixels are off the edge of the screen, not
only do they send fthe required information, they also send a letter reminding you
just how dangerous it is to open the box. I would echo their warning - it 1is
extremely dangerous to open the set up and adjust the height and width of the
picture. The voltages used by colour tubes can do some very spectacular things to
you, from a distance, and the tube can hold a charge for a long time after it is
gwitched off. If you are only fairly sure you know what you are doing, leave it
alone! The height is easy to get at, but the width adjustment is under the tube.

Sneaky advertisement.

You can buy a historic computer for a very reasonable price, as a reader
of this magazine. I would like to sell the original Marvin to an enthusiast
{you'll need +o be!) for a low type price. Nascom 1, buffer board, 32K RAM A
modified to run properly, and MNUG (Merseyside Nascom User's Group) EPROM board
with Nascom BASIC, Bits & P.C.s toolkit and extension keyboard, complete with 3
amp PSU, and variocus bits of documentation for only £150. Nascom I.0. board with
one PIO and a CTC for a mere £50. Winchester Technology sound board (likely to
become exceedingly rare!) with amazing Doorbell chip, only £60, because it won't
go at 4MHz without wait states.

finished := TRUE

35

Book Reviews by R. O'Farreli

L P Y T Y N

With the permission of the Editor, I would like to apologise to the
enraged readers of the 80-Bus News for the absence of any book reviews in 80-Bus
No. 3. This was due in part to other demands on my time (my surgeon won't allow
me bring my Computer into hospital with me - I think it makes him feel insecure)
and also to the fact that I found very few books worth buying and reading. It is
not generally known, but most, if not all, of the reviews published in 80-Bus
News are based on items purchased by the reviewer using real money. The idea that
we sit around all day unwrapping parcels of items sent to us free, gratis, and
for nothing for review is a gross misconception in general. If some kind
manufacturer wishes to send me a dual floppy disk set up for review and extended
test, I will be happy to facilitate him, as my car is currently running around on
my dual floppy disk funds, they having been requisitioned +to rebuild its
automatic transmission. Did you know that early models of the Volvo 34% suffer
from a design fault in the bobweights, resulting in catastrophic failure of the
transmision every 10 - 20 thousand miles? I found this out the hard way! I'm glad
to say that, having spared no expense, the transmission is now rebuilt, using the
new improved parts, and should be good for many hundreds of thousands of miles.
Anyone like to buy a slightly used Volvo 343%°%...

Enough of the bulletin from the battlefront. Bring on the books! As T
said, of recent months there has been little published that interested me. This
may be due in part to the fact that Dublin is very nearly a computer desert. One
book I found was:

Microcomputer Technology by Prof. Julian R Ullman,

published by Pitman at about £5
This book is an introductory survey to microcomputers and their use. Its specific
chip is the 780, and it deals with the programming of the 780, the types of data
structures one meets 1in computing, the use of high level languages, and a fair
whack of logic design. The most interesting section is the last chapter, where he
uses Pascal to show how a Z80 assembler might be written.

Microcomputer-based Design by J.B.Peatman,
published by McGraw Hill (student edition about £7.50)

This is in many ways a similar book to the foregoing. Published in 1977, its
emphasis is a 1little oriented towards the 8080 and other older machines.
Nevertheless, it does have appendices on the Z80 and 6809. It also gives a fairly
good overview of the problems of interfacing from chip to chip, and suggested
circuits for voltage level shifting.

An Introduction to Database Systems by C.J.Date,
published Addison Wesley

Is a substantial work reviewing the differing +techniques used in data base
programming. I've read it once, and have put it aside for a rest before reading
it again, to give its contents time to be assimilated. I'm interested in the
problems of data base management as I intend to write a simple Database
Management System for a particular application.

The Art Of Computer Programming
Vol 1: Fundamental Algorithms
Vol 2: Seminumerical Algorithms

Vol 3: Searching and Sorting
by D. Knuth, published Addison Wesley

These ©books form <the Bible of computer studies. There is a rule - "If it's in
Knuth then its right". They are not light reading. Usually about 20 minutes is
all you can take, and the rest of the day is spent assimilating what you have

36

read. They are also not cheap, costing about £20 each, although there is a
paperback of Vol 1, and possibly also of the others. I'm in the process of
reading them, and mention them here to draw your attention to them.

If you are into Statistics, you might wish to look out for:

Basic Statistical Computing by Cooke, Craven and Clarke,

published by Arnold (circa £6.50)
This is a Dbook %o show how microcomputers can be used in the analysis of
. statistical data. It gives fully documented Iistings of many statistical
procedures in BASIC (the shame of it!) and claims that they have been proved on
four common micros. If you are into statistical analysis, this might well save
you a lot of work.

Without wishing fto cast aspertions on Knuth's master work, I have kept
the good wine until last.

The Mythical Man Month by F.P.Brooks,

publ. Addison Wesley, costs circa £7.
This is a series of 15 short humourous essays on various aspects of writing large
complex computer programs. It is based on Brooks experience as director of the
team which wrote the operating system for the IBM 360. I first heard of this book
some five years ago, but only recently came across a copy. It has been reprinted
earlier this year (by popular demand, I think). Brooks deals lightly and
humourously with his subjects, but gets his point across - possibly the better
for the 1light touch. If you enjoyed reading Browns 'Interactive Compliers and
Interpreters' and 'Pascal from Basic', then I'm sure you will 1like this, more
particularly if you are involved with communication and management. It must rate
alongside Kernighan and Plauger's 'Software Tools' as one of the seminal books.

So much for the rave review. As I've said before, many of these books are
textbooks and not ther 1lightest reading in the world. Don't rely only on my
reaction to them. Look for them in your local technical bookshop and browse
through them before you purchase.

I realise that the foregoing reviews offer very little for the beginner.
I've been asked to suggest a good starting book on Assembly Language. Looking
through my bookshelves, I keep coming back to "The Z80 Microcomputer Handbook" by
Barden, published by Sams (distr. Prentice Hall), cost about £7. This was one of
the first books on programming the Z80. It taught me much of what I know on the
subject. It 1is readable, and accurate, which cannot be said of all 780 books!
This is the book I recommend whenever I am asked for something on assembly
language for 780 users.

To show that I am not utterly involved in computers to the exclusion of
any trace of the humanities (as in Arts and Humanities), I have also been reading
(inter alia):

The Sources for the Early History of Ireland - Ecclesiastical. by Kenney,
published by Columbia University Press 1929, and recently reprinted (c. £20)

This is very nearly to the early history of Ireland as Knuth is to computing
science. It surveys the extant literary sources, giving useful synopses and
references to previous publications on the subject, so that you may Tfollow
historical lines of enquiry quite easily.

37

RP/M —— MAP 256K RAM —— SYS — VIRTUAL DISK by RICHARD BEAL

B T T L N N . L L L L rrvyere

This dissue of 80-BUS NEWS is the first for which I have written an article,
so I would like to start by congratulating the editors on keeping up the Dbest
traditions of INMC NEWS and INMC80 NEWS, by publishing my contributions! In fact
not a word has appeared from me for a year, but I haven't been completely out of
action during that time, as you will see.

There are four related articles in this issue, and it might help if I
explain how they are tied together. First is the article on RP/M. This is the ROM
operating system for Gemini computers, which has been updated. The article
explains all the changes that have taken place, and how RP/M has been altered to
keep up to date. The latest changes, bringing RP/M +to version 2.1, have been
triggered off by the introduction of the MAP 256K RAM card.

The MAP RAM is the subject of +the second article, which reviews this
exciting new 80-BUS card and explains how to program it.

The third article announces the latest version of SYS (15.0), which has
grown considerably over the last year, and now supports almost every 80-RUS
configuration you can imagine. How about a Wascom 2 fitted with a Qemini
Winchester hard disk, or, perhaps Micropolis double sided floppy disks (or Pertec
double sided), a standard eight inch floppy, a Gemini video card, and a megabyte
of MAP RAM! With SYS it's easy, provided a Gemini GM829 FDC controller is in use.

The fourth article, about Virtual Disks, brings together the hardware of the
MAP RAM with the software of SYS. Are Virtual Disks useful or just a desperate
attempt to find a use for too much RAM?

The fifth article (that surprised you didn't it) is a review of the H.V.
Beeper. It has nothing to do with the others, except that T wrote it. Happy New

Year.

LATEST NEWS OF RP/M by RICHARD BEAL

S S I NI N NN N O N N)

I noticed a strange thing when I was looking through old issues of the
80-BUS NEWS and INMC 80. Wobody has ever written anything that I can see about
RP/M. There must be lots of people with RP/M in their systems, because most
Gemini GM811 and GMB13 computers have been supplied with 1it, except for those
packaged with disks such as the Gemini and Quantum computers, which have special
boot programs (called SIMON). One reason for this may be that many people have
disk systems nowadays, so they have CP/M and are not interested in RP/M. However
perhaps they give it a passing thought as it boots up their disk for them!

In case you don't know what RP/M is, let me remind you. RP/M means ROM
Program for Microcomputers. It is a 4K ROM which provides simple monitor program
facilities rather 1like those in NAS-SYS. However the main feature of its design
is that it provides a programming interface almost identical to that provided by
CP/M. This means that all software developed under RP/M will run under CP/M,
allowing easy migration to disks later. Also, some CP/M software, such as the
Microsoft BASIC interpreter, will run under RP/M. It simply has to be loaded from
tape (or from EPROM).

It is also possible to develop and test software under CP/M which is
intended for use on a ROM based system using RP/M. This could be most useful
where a dedicated control system is being built. For example a Gemini GM811 board
could be used by itself, without video card or disks, %o control equipment
attached to its PIO. The sockets on the GM811 would contain RP/M, a special EPROM
designed to control fthe system, and RAM. Also a terminal could be attached to the

38

serial port. This could make a very economical solution to many engineering
problems. It would be interesting to know what applications RP/M is being used
for -~ why not write an article about yours?

Now to bring you up to date on RP/M. The first release was Version O.1,
which was issued with all GM811 boards until recently. This version was quite
successful as a first attempt, since it had no reported bugs! However there were
a number of areas for improvement to the design, and when the GM813 was produced
and the Micropolis eighty track drives appeared, a mnew version was required,
Version 2.0 was issued in June 1982, and like the original still has no reported
bugs. The description of Version 2.0 below, which describes the changes made, mav
convince you to try to persuade a Gemini dealer to sell you one.

The introduction of add-on memory mapped RAM cards introduced a small
problem since if you put together a system comprising a Gemini GM811 CPU card,
RP/M Version 2.0 and the MAP 256K RAM card then unfortunately it doesn't work at
all. Any other combination is all right, so if the CPU is a GM813, or if the
system is a GM811 with RP/M V0.1 (which is more likely anyway), then there is no
problem. The reason 1is %o do with the memory addressing ports chosen by MAP,
which unfortunately conflict with the way RP/M finds out whether it is plugged
into an 811 or an 813.

The good news is that a very simple modification to RP/M cures this problem
completely and has no unpleasant side effects. Gemini will (once the old stocks
are used up) be issuing RP/M Version 2.1 as standard for 811 and 813, but for
those of you with V2.0 and an EPROM vprogrammer able to cope with the 27%2, here
is a complete description of the changes between 2.0 and Z2.1.

Address V2.0 V2.1
FO68 20 39
F108 20 ¥D
F109 04 41
P10A ED 20
F10B 41 02

The first change simply updates the version number, and the rest reverses
two instructions. Please note that some people investigating this problem have
suggested other changes. These will cause bad things to happen if the RP/M is
used in an 813, and the changes described here are the only official ones. By the
way, please do not ask Gemini to replace your V2.0 with V2.1, as they will not be
amused! I suspect that since most GM811s have VO.1, less than 10 7people in the
world will ever put togsether a system which requires this change, and these
people should ask MAP for help. Credit goes to Gemini for issuing V2.1 at alil,
since MAP are in competition with them. This reflects their awareness of the
benefits that result from cooperation over the 80-RBUS and keeping the whole array
of products from different suppliers compatible.

As promised, here is the description of RP/M V2.0, which all V0.1 owners
should study carefully.

RP/M VERSION 2.0 (OR 2.1) — A SUMMARY OF CHANGES TO VERSION 0.1

The disk boot routine operates with both Pertec DD/DS drives and Micropolis
DD/<8S or DS> double tracking drives.

Operates both with original GM811 and new GM813 CPU cards.

Automatic disk boot on power-on or reset if a disk card is in the system.

Operation is possible without a video card, using the serial interface.

Support of parallel printers is included.

39

THE KEYBOARD

— —— — - "o -

If the CPU card is a GM813 then bit 1 of location 0003 (IOBYTE) is
automatically set to 1 on power-on or reset. This disables the operation of the
keyboard attached directly to the CPU card, since this is not provided for on the
GMB13.

Screen edit mode is entered by Control-% (Ed. - %'at') instead of DEL %o be
consistent with the various disk BIOSes.

Screen dump operates only within screen edit mode to be consistent with SYS
and to allow the control code previously used to be available for program use.

RESETTING RP/M

On reset the system is tested to see if a disk card is present. If it is
then an attempt is made fo boot from the disk. If +this fails an appropriate
message is output as from the B command.

COMMANDS

The D command may be cancelled during output by typing a Space.

SCREEN FEDITING

Use Control-% [% = 'at'] (Mull) to enter screen edit mode. The cursor

changes to a blinking block while in this mode. Entering Control-C exits screen
edit returnine a Control-C and a carriage return, instead of performine a warm

hoot.

SCREEN DUMP

The contents of the screen may be printed by pressing Control-R while in
screen edit mode. When the screen has been printed screen edit mode is terminated
automatically. The output is directed via the I/0 jump table, allowing users who
modify this table to obtain screen dumps.

PRINTER SUPPORT

Both serial and parallel printers are supported. To use a parallel printer
use the S command to change location 0003 (IOBYTE). Bit 7 is tested to determine
which type of printer to use. If it is 1 then the parallel printer is selected,
so change the value from O1H to 81H or 03%H to 8%H. The parallel printer interface
uses Centronics conventions. Port B is the output data port, and port A is used
to control the data transfer. Bit O of vort A is connected to the BUSY line from
the printer, and bit 1 is the strobe which indicates %o the printer that data is

available.

3
=
H
o
o

O
(a1
e
pew]
&

OPERATION WITHOU

RP/M is designed to be used with the Gemini GM&12 intelligent video card.
However for some applications it is useful to be able to operate the system with
minimal hardware. RP/M will now operate without a video card if bit O of location
0003 (IOBYTE) is set to O. Since this needs to be set on power-on, this bit is
automatically flipped if a link has been installed on the CPU card. This is the
Ring Indicator link attached to the Modem Status Port. If this link is made then
the serial port is used as the console device. Note that serial handshaking is
used, so ensure that this is provided. If there is a video card in the system it
will be reset but it will not be used and its keyboard will not operate. If there
is a disk card then an sttempt will be made to boot = disk, as normal. All
messages are output to the serial printer, and input may be from a serial

keyboard or from a keyboard on the CPU card (GM811 only).

40

It is even possible to operate the system with no video card and no serial
terminal, but with a keyboard on the CPU card (GM811 only) and a parallel printer
for output, by <turning on the computer and immediately using the S command
without being able fo see the serial output, to turn on the parallel printer.

There are several limitations on the facilities provided if there is no
video card. No screen edit mode or screen dump is available. Also, no cassette
input or output will operate, and use of the R or W commands results in an error
message.

FIXED LOCATIONS IN RP/M

For certain applications it may be convenient to modify certain default
values used by RP/M. These may easily be changed when using RP/M by using che
appropriate command, but if access to an FEPROM programmer is available then some
initial values may be changed. These are stored at fixed locations in RP/M.

FOO9 contains the two byte value used as the UART divisor. The normal value
is 417 decimal, OtA1 hex, which is stored as A1 O1. This gives a speed of 300 bps
(30 characters per second).

FOOB contains the initial value of the TIOBYTE. This is O1H, giving a serial
printer. Change to 81H for a parallel printer.

FOOC contains the number of lines per page. This is set to 66 decimal, 42
hex.

THER FEATURES

If a form feed character (OCH) is output to the video card by a program,
this is ftranslated to a carriage return and line feed.

While the console input routine is waiting for an input the cursor is
displayed as a blinking underline. Otherwise the cursor is displayed but does not
blink. This overcomes problems relating to programs that scan the console for an
input instead of calling the console input routine.

An attempt to boot a disk, whether successful or not, does not change the
contents of +the program area. This allows a disk to be booted and then a Save
command to be issued, providing another means of moving data between an RP/M and
a CP/M system.

If an attempt is made to boot a disk without a disk card in the system, then
an error message is output. Previously this could cause the system to hang up.

The screen editing logic has been improved to return +the correct console
status when an edit buffer is pending.

CONCLUSION

Please notify us of any problems with RP/M, as well as any suggestions for
its improvement. We hope that this new and more advanced version will be as free
of errors as the original version.

REVIEW OF THE MAP 256K RAM CARD by RICHARD BEAL & D. R. Hunt

The DH bit:

I had almost completed my review of the MAP RAM by the copy date of the last
issue, but lack of time did not allow me to finish, so when Richard produced his
review of the card with particular emphasis on the software side of matters, I
scrapped my review in favour of the following .as his 1is far more thorough.
However, Richard has not covered the obvious points concerning the hardware so T
will detail them here.

The card is a NASBUS/80BUS 8" x 8" card similar in appearance to all the
existing RAM cards, and particularly the Gemini GM802, in that it contains a
block of RAM surrounded by the necessary decoding and driving logic. The board is

41

supplied built in either 64K or 256K versions. The RAM block is socketed to allow
easy upgrading from 64K through 128K, 192K to 256K. The quality of the peb is of
the standard expected of NASBUS/80BUS cards, being double sided through hole
plated and coated in a solder resist lacquer. A slight departure from the norm
here, as the solder resist is blue in instead of the usual green. Dare I say it,
adding a touch of colour to the system. The pcb edge connector is gold flashed as
is to be expected. Overall quality of consfruction is good (the early sample T
had was hand soldered, I do not know if production boards will be flow soldered).

My only complaint from the hardware point of view is the manual supplied.
This excels in the trend started by the early Nascom manuals and continued by the
current DRI CP/M manuals in its total incomprehensibilty. (I hasten to add that
there 1is not a lot wrong with the current Nascom manuals.) It is the most
difficult document to understand. I wasted two evenings trying to access more
than 64K, not because it didn't work, but because I couldn't understand the
words. Wo examples of use were given, and the description of the mapping system
was inadequate and referred to IC numbers, which in the absence of a circuit
diagram, was less than helpful.

DH's conclusion:
The MAP RAM is well built and well engineered, and arguably worth the money

if you can find something to do with it (read on), let down badly by totally
inadequate documentation. Now software has been written for it, it is of much
creater use.

.+ continued by Richard Beal:

The MAP 256K card, which I shall refer to as MAP RAM, is the first memory
card for the 80-BUS which offers more than 64K. The history of the RAM cards is
worth remembering.

First came the Nascom PAM A, which had 32K RAM and 4¥ ROM, which seemed
marvellous at the time. This card was plagued with problems, some not perhaps its
own fault, and it took a long time before a definitive set of modifications <o
make it work vperfectlvy was vroduced (see INMC YNews Issue 7). To be fair, the
original specification never included operation at 4MHz, which evervone wanted.

This was followed by the Fascom 4A8¢ RAM card, which worked perfectly, and
had the apparently useless new feature of a page select system allowing anv of
four 64K vpages to be selected. PRut this gave the first hints of what was to
follow.

Gemini then produced a 64K RAM card, which was useful to disk system users,
who needed the full RAM memorv. It too supported the four pase system. Then came
the Gemini GVB1% CPU and A4¥ RAV card which ruzzled evervone by having nemory
mapping. This uses a high speed RAM between the OPU address lines and the memory
chips, which alters the addresses selected so that many different phvsical hlocks
of 4K are mapped onto the 16 4K logical memory areas. This translation process is
set up hy output of values to port FF.

When MAP decided to vproduce a 256K card they therefore had a challenge,
which was 1fo produce a card which would orerate with all the existing systems.
They have put a great deal of thought into their product, and have achieved this
aim excellently. MAP RAM works with the Nascom 1, Nascom 2 and Cemini GM811
computers using a new %2¥ paging system, which is very easy to control. It also
works with the Gemini GM813 computer, exactly as Gemini intended, by adding more
physical 4K pages which are addressed by the memory mapping system, as a logical
extension of the GMB13 design.

The next important question is, "Does it work?". The answer is a definite
YES. There is no difficulty in getting the card going. If the card is plugged in
to a Nascom or GM811 system, it immediately acts as a normal 64X RAM card. The
appropriate software can then be used to activate the other memory pages. If the
card is to be used with the GM81%, then the two header plugs on the MAP board
have to be changed, and one link altered. It would be better if this link had
been made easier to change. MAP offer to help if you are not confident of making
any of these changes yourself. You can have up to four MAP RAM cards in a system,

42

giving up to 960K of virtual disk. In this case each card must have a different
header plug, and the manual supplied shows clearly how to wire these up.

It is also possible to buy the card with only 64K RAM and upgrade it later
by simply adding the extra memory chips. MAP are quite happy that you do this and
will supply the extra chips as you want them. This has a great advantage as a low
cost approach, as the price of the 256 kbit chips will no doubt continue to fall.
This makes the MAP RAM an interesting, although more expensive, alternative +to
the Gemini 64K RAM card.

I do have one major complaint about MAP RAM. The documentation is very hard
to understand, and there is not a circuit diagram. There are no examples of how
to program the MAP RAM, and not even a clear indication of the programming
instructions you would use to address it. When so much good work has been done on
the design of the card, it is a shame that a few hours more were not spent on the
manual. Also it would be helpful to have a circuit diagram, as many people like
to be able to work on their own equipment should anvything go wrong. Instead of
just ecriticising, I had better +try +to help! So here is some of the crucial
information which I eventually deduced - with some advice from MAP, who are very
helpful!

How to program the MAP RAM if you have a ¥ascom or CM&811 computer

The control wport is FE. If you output 00 to port FE vou have a normal 64K
card, and this is the condition when you turn the system on.

If you want to swop the bottom 32K of RAM with other 32K pages, vou output a
different value to port FE. You output C2 for the first extra 322K vpage, (3 for
the next, and so on, all the way up to DF. To switch back to normal, output 00 to
port FE.

For example to page in the third extra 32K vage, execute the instructions

LD A,0C4H ; C2 is the first extra page, sc C4 is the third
0UT (OFEH),A

Then fto return to normal
YOR A
ouT (OFEH),A

How to program the MAP RAM if you have a GM813 computer

The control port on the Gemini GM813 is FE. It must be addressed by a 780
instruction using the C register to address the port. The <top half of the B
register must contain the logical 4X page (O-F) to which the physical memory is
to be mapped, and the data value output must contain the number of the physical
4X block.

For example fo swop the 4K of memoryv starting at 2000H with the fourth extra
4¥ block, use the instructions

LD BC,20FEH ; 20 because Z20Q00H, FE is the port
LD A,13H ; 1CH is the first extra page, so 13H is the fourth
ouT (C),A
To then return this area to normal, use the instructions
LD BC,20FEH ; 20 because 2000H, F¥ iz the port
LD A,C2H : The normal blocks are 00-0F, so 02 for 2000H

our (¢),a

More Advice

When paging in and out memory, there are two vital rules to remember (which
I forgot several times). ,
1. If the program code is in the area which is paged out then the system will
crash.

43

2. If the stack pointer is in the paged area and you use the stack the paged
nemory will be corrupted. If you depend on the stack contents (such as return
address) still being there, then the program will crash.

MAP Software

Most MAP RAM users will probably never want to write their own software for
controlling the memory vpaging, so perhaps the information about programming the
card is not very dimportant. WMAP supply a modified version of the Gemini BIOS
which supports the MAP RAM as a virtual disk of up to 512K, using a GM811 or a
GM813. An alternative is fo use a new version of SYS (Version 15.0 or later)
which now provides support for VAP RAM for Nascom and Cemini computers, with a
virtual disk of up to 960K bytes. (See article on SYS elsewhere in this issue).
HMost users of additional memory at the moment will want to use it as = virtual
disk, which can be very useful. (See article on virtual disks elsewhere in this
issue). However CP/M Version %, otherwise known as CP/M Plus, is on the way
(slowly - horribly complicated), and this requires 96K of memorv as a minimum, if
advantage is to be taken of most of its features. The MAP RAM will +then be in
even greater demand, assuming that CP/M Plus can ever be got to work on it!

[Ed.'s notes - from what we have seen so far of CP/M Plus (CGemini have a
pre-release version running) the MAP RAM board is NOT the best way to provide the
additional memory that is required, and it looks as though yet another method of
RAM switching is yet to be born! The main attraction of CP/M Plus is its
increased speed, gained by keeping various directory and data buffers in
additional RAM. The way Digital Research have arranged this, it would seem that
the type of memory switching provided by the MAP board is unsuitable. By the way,
there are two versions of CP/¥ Plus, one running in 64K or less and one running
in 96K or more, but I wouldn't hold my breath waiting for either as DRI will not
yet state the anticipated release date of fully debugged versions. Watch this
mag. for further details.]

The Great A19 Debate

The WMAP manual points out that the GMR13 does not bring address line A19 to
the 80-BUS. While this is gquite true, the GMR13 was merely following +the 80-BUS
standard, which does not allow for A19 on the BUS. The obvious place for it is
line 49, which was instead allocated as an additional ground by Nascom some time
ago. This extra ground line does not appear to be needed, and everyone now seems
to agree that the 80-BUS specification should have had line 49 as A19. But vwhat
should be done about it? Without A19 the maximum memory size is limited to 512K
bytes, and people are already installing svstems with a full ‘megabyvte. The MAP
approach has been fo unilaterally redefine the 80-BUS and they have used line 49
for A19. They suggest that anyone with a GM813 who wants to have more +than 512K
should modify it so that it no longer grounds line 49, but connects it to A19
instead. But if you do this you should be careful to check all the other cards in
the system, and the motherboard itself, as any of these may have implemented the
80-BUS specification and grounded this line. It would be nice if Gemini agreed
that this was a good idea, but I suspect that instead they may feel that it would
be better to define some other line as A19, in order to keep to the universally
agreed specification and avoid teliling people to mutilate the GM813 [Ed. - and
all other Gemini boards and some boards of other manufacturers, including NWascom,
which as per spec. have ithis line grounded‘] and their motherboards. On your
system it is probably wisest to follow the recommendations which come with the
large RAM card you buy, and make a note of what your 80-BUS does. See INMC 80
Issue 4 for the 80-BUS specification.

Conclusion

o oo s 2

I have no hesitation in recommending the MAP RAM card, despite the poor
documentation. It is well engineered and works perfectly. With +the growing
popularity of wvirtual disks, it is likely to be a success. I look forward to
seeing the next MAP product which is rumoured to be a memory mapped (paged out)
80 by 25 video card complete with an optional floppy disk controller which is
software compatible with the Gemini GM809 disk controller!!! Gemini are rumoured
to be producing a new memory card, but there is no information yet on how much
memory it will have. My guess is that 256K is the minimum they will consider, and
512K could be possible! Anyway, it looks as if Gemini are getting some tough
competition, which will no doubt be good for us all.

The MAP RAM is available from MAP 80 SYSTEMS LTD., as advertised in this
issue.

SYS — LATEST DEVELOPMENTS by RICHARD BEAL

B T T Y L L L LT VNP VP

In the December 1981 issue of INMC 80 (Issue 5 and last) I wrote an article
about SYS. At that time I said that I had just finished a new version which
supported the Gemini double density disk card. That seemed quite a step forward
at the time, but a lot has happened to SYS in the last year, and a new version,
V15.0 has Jjust been released, so I thought it would be a good time to bring you
up to date on the latest developments. First I will just give a few hints of what
it now includes:-

NASCOM --- GEMINI GM811 --~ GEMINI GMS813 —-= GALAXY --- QUANTUM
MICROPOLIS =~~~ WINCHESTER --- SHUGART --- 'SHUGART COMPATIBLE' --- 8 INCH
PERTEC --- CROMEMCO --- RML =--- XEROX -=-- SUPERBRAIN --- RAIR
VIRTUAL DISK =--- VIRTUAL BOOT --- MAP 256K --- MEMORY MAPPING
MEGABYTE OF RAM SYSTEMS --- CONFIGURATION MESSAGES
'"FIXED' SCREEN EDITING --- SCREEN PAGING CONTROL ~--- SCREEN DUMP

First a brief description of what SYS is, for those few of you who are not
yet using it!

SYS is a CP/M program which replaces the BIOS of the CP/M system with an
expanded BIOS which has many additional features. The BIOS is the part of CP/M
which deals with input and output.

SYS can be executed automatically on Reset or Cold Boot and it automatically
relocates the new BIOS to match whatever size CP/M system is in use. This means
that it can easily become an integral part of the computer system.

SYS is always stored on disk with the standard name of SYS.COM, but there
are a vast number of possible configurations which support different hardware
requirements. These are selected by conditional assembly.

- SYS may be used on Nascom or Gemini computers. It requires a Gemini GMS0O9 or
GM829 double density disk card. At present it supports Version 2.2 of the CP/M
operating system.

S5Y3 contains two versions of the disk software. The first of these supports
only Pertec 35 track 48 t.p.i drives or Shugart compatible 48 t.p.i drives (if
the +time constants are changed to suit). However it has the advantage that it is
able to provide support for a whole range of disk formats which are described
below, allowing data to be exchanged with many other types of computer. The
second incorporates the Gemini standard disk software which includes support for
Winchester hard disks and standard eight inch floppy disks, aa well as further
options for Pertec, Micropolis, and other 'Shugart compatible' 96 t.p.i five inch
disk drives. See the suppliers note on Winchester version availability at the end
of the article.

45

The main features of the SYS expanded BIOS are:-

(a) Full screen editing, which allows the cursor to be moved back up to a line
already on the screen, so that the line can be edited and reentered to CP/M. This
feature, also found in all of Gemini's BIOSs for Nascoms and Geminis, is most
unusual if not unique for CP/M systems.

(b) Screen dump to the CP/M list device, so that an image of +the screen can
easily be printed. (Also now in Gemini's own BIOSs.)

(c) Automatic screen paging, so that information does not roll off the top of
the display before it has been read.

(a) Support of the Nascom screen display or the Gemini Video Card. An
additional keyboard is supported on the Video Card.

(e) Support of the Nascom keyboard or an ASCII encoded keyboard. On the Nascom
keyboard, the action of the Shift key may be reversed by pressing Control/Enter.
The % (% = 'at') key when not shifted may be used as a Tab key or as an
alternative Control key. A number of command strings may be automatically
generated by pressing the GRAPH key and a letter, and this simplifies the entry
of several commonly used commands.

(f) Full support for the CP/M IOBYTE option.

(g) Support for both serial (Teletype compatible) and parallel (Centronics
type) printers. A variety of options are available inciuding handshaking and
automatic handling of form feeds so that printers without a page throw mechanism
will operate correctly.

(h) Ability +to automatically identify single density disks in drives B, C and
D. The primary format supported is the SD Systems format, extended to also wuse
the second side of +the disk. This format was used by the Gemini/Henelec GM805
single density disk system. Special versions can be generated which instead allow
alternative single density formats to be used. These are the Cromemco SS/SD, RMIL
SS/SD and Xerox 820 SS/SD formats. In each case these formats require 40 +4rack
drives which are not supported. You must take care to access only the first 35
tracks of the disk if you use these formats.

(i) Ability to read and write other double density disk formats. Special
versions can be generated which allow an alternative double density format for
disks in drive B. At present, Superbrain QD (DS/DD) format, Nascom 35/DD 80 track
(only with a Shugart compatible interface 96 t.p.i drive) and Rair DS/DD formats
are supported.

() Optional read after write checking for all changes to disks. This gives
greater security while decreasing performance.

(k) Standard disk software supporting Winchester hard disks (see note on
availabiility), standard eight inch floppy disks, Pertec, 'Shugart compatible’,
and Micropolis five inch disks.

(1) Support of a virtual disk which appears exactly like a real disk but is in
fact additional memory. This can use the standard 64K page mode allowing either
additional RAM cards, each of up to 64K. This option 1is now also included in
Gemini's own BIOSs. An alternative option allows the use of MAP memory cards with
up to one megabyte of memory. These operate either in 32K pages with the Nascom 2
or Gemini GMB11 C(PU cards, or in full memory mapped mode with the Gemini GM813
CPU card.

(m) Warm boot from the virtual disk, which makes this process very fast.

(n) Extensive messages are displayed when SYS is executed, describing the
configuration for which it has been generated and the main features included.

(o) Most features are set by easily understood assembly options, allowing
either a small simple BIOS or a large advanced BIOS to be generated to the exact
requirements of the user.

'Fixed' Screen REdit

A new feature of SYS which requires some explanation is the 'fixed' screen
edit mode. At the moment if you enter screen edit mode, edit a 1line and press
Return, the system returns to normal. But back in the days of NAS-SYS you were

46

effectively in screen edit mode all the time. This was very useful when, for
example, editing BASIC programs, as you did not have fto remember to enter screen
edit mode before editing each line. Now this feature is available with SYS and
CP/M, using the new 'fixed' screen edit mode.

To enter 'fixed' screen edit mode, enter screen edit mode, and then again
press the key which activates full screen editing. This makes the cursor on the
IVC change to a solid non-blinking block, and this means that yvou are permanently
in screen edit mode. As before, press the Return or Enter key to enter a line as
input. When CP/M requests the next input character, screen edit mode will
automatically be reactivated. To escape from this mode, press the key a third
time. This feature is particularly useful when editing BASIC programs, as a LIST
command can be followed by extensive editing of the lines displayed, without
having to remember to enter screen editing mode for each line.

Screen Paging Control
Another improved feature of SYS is control over screen paging. If too many
lines are output to the screen without any input being obtained from the
keyboard, then it 1is ©possible that information might roll off the top of the
display and be lost. Whenever this could occur, the following message is output:-
"¥%% Press "C, “S, R, W, K or Space ¥¥¥"

If you press Control/C or Control/S then this character is returned as the
next input character to the program being run.

If you press R then the screen paging feature is disabled until the next
user input. For example it would start to operate again if Control/S was used +to
pause the output display.

If you press W then the screen paging feature is disabled until the next
warm boot.

If you press K then the screen paging feature is disabled wuntil the next
cold boot, or until SYS is executed.

If you press a space then the next page of output is displayed.

MAP 2BAK RAW

SYS now provides full support for the MAP 256K RAM card, allowing virtual
disk systems with up fo a total of one megabyte of RAM. This is described in more
detail elsewhere in this issue. SYS uses the new 32K paging method for the Nascom
and Gemini GM811, and with the GM8173 it uses the full memory mapping capabilities
of the GM813 and of the MAP RAM. SYS provides warm boot off the virtual disk, and
this speeds up this process considerably. It also has the advantage that you
don't need to worry about having the correct data on the system fracks of your
disks, as these are no longer used except on cold boot.

Restructuring of SYS

In order to allow the support of three different types of virtual disk, as
well as the inclusion of two completely separate versions of the disk software,
SYS has had to be restructured. It is now much more easily maintainable, as the
different parts are stored in eight separate source modules. These are SYSB1.MAC
to SYSB7.MAC, and SYSB6A.MAC which contains the alternative standard disk
software. As usual the user has only to edit SYSB1.MAC, which now contains only
the option swifches and various helpful comments, and then submit SYSB.SUB, which
does the assembly and link. This takes about five minutes, which is very fast
considering the size of code which is being processed. M80 actually stops and
thinks to itself for a bit when it has to generate all the relocation labels, so
there 1is no need to worry if your system becomes silent. The M80 assembler and
L80 linker are required, and I recommend release 3.44, which I know to work
correctly.

47

Problems with SYS

Various problems have been reported by users of S5YS, and most of these have
been cleared up very easily. For example you should not try to run a Gemini
computer wusing a SYS generated for a Nascom. It may be helpful to list a few
problems which people have encountered which have proved to not be errors in SYS.

When a Nascom with SYS is switched on and SYS is executed the system may
stop and wait for an input character before the configuration messages are
displayed. This is caused by a simple hardware problem. The serial input port has
supplied a spurious null on power-up which has activated screen edit mode. The
solution is either to assemble SYS with the SKBD option set to FALSE, or connect
the serial input line to ground so that no character is received. Remember that
the serial input may be set to RS232 or cassette, and ground the appropriate
line.

When spurious input characters appear on the screen there are several likely
reasons. Check that the GEMINI flag is set correctly, and check the SKBD, NKED,
GKBD and VKBD options carefully. GKBD must be FALSE with the Gemini GM813, as
there is no keyboard port. If you have a Gemini video card it is best to plug the
keyboard into it and set VKRD to TRUE.

If the system crashes when SYS is executed then it may be configured
incorrectly. For example 1t may specify a virtual disk when none is attached.
Alternatively there may be insufficient memory for the SYS BIOS if the correct
changes fto MOVCPM have not been made (see above).

If a virtual disk is used and a different configuration of SYS is executed,
then the directory of the virtual disk may become corrupt. The system should be
switched off and on again to be certain of clearing this problem. This is because
cold boot does not clear the contents of the virtual disk, if it appears to be
initialised already.

Conclusion

I hope that you continue to enjoy using SYS. I have to admit, as Gemini
point out, that it is really only suitable for computing enthusiasts, but that is
who it was written for. Finally, my thanks to David Parkinson and Gemini for
their help with the inclusion of the standard disk software.

Please direct any queries about SYS to the supplier, as I only have time
to look into any really difficult problems, as with luck there aren't %oo many
of those!

Suppliers note.

As the Gemini Winchester drivers have been incorporated with the kind
permission of Gemini, it has been agreed that the version of S8YS incorporating
the Winchester drivers will only be supplied if the user produces evidence of
owning a Gemini GM835 Winchester. This is unfortunate for those who have the odd
Winnie knocking about in the junk box and wish to put it into use. On the other
hand, it does allow those who already have a Gemini GMBO9/GMB15 system running on
a Nascom and who wish to add a Gemini GM835 to do so without scrapping the whole
system and starting again. On the whole, Gemini's wish to protect their software
is understandable.

SYS is available from HENRY'S RADIO, see their ad. in this issue.

VIRTUAL DISKS — ARE THEY USELESS? by RICHARD BEAL

IS O I O OB I I B B NS DN N N D N PN S D B NN B NS P N

Are virtual disks a useful invention or are they a desperate attempt to find
a use Tfor lots of RAM? A virtual disk, also known as a memory disk or pseudo
disk, is a way of using a large quantity of RAM as if it is a real disk. In CP/M
terms the translation of track and sector to a memory address in the extra paged
RAM is done by special code in the BIOS.

48

The SYS BIOS has supported a virtual disk for about a year and a half, using
the original Nascom four 64K page system, but this was prohibitively expensive
and was limited to a virtual disk size of about 128K. The introduction of the MAP
256K RAM card, no doubt to be followed by a similar product from Gemini, is
already making large memory systems common, and virtual disks will be widely used
as a result.

When I first used a virtual disk, I made it into CP/M drive P, and in fact
on many systems it is known ‘as drive M. The problem is that one tends +to forget
about it, and since the contents of the disk are lost when the power is turned
off, a lot of time can be spent moving files from real disks to the virtual disk,
and then later moving the new files back.

So for a long time I had the luxury of a virtual disk, but hardly ever used
it. Then I started thinking about how it could be made more useful, and after
nuch experimenting, came up with several ideas. The first was to reduce the +ime
taken to warm boot by restoring the CP/M image from the virtual disk. This works
well, and for the first time I began to find the virtual disk useful.

The next change was to prevent the virtual disk being wiped clean if I
pressed Reset. This proved easy, as I simply put in a check to see if it was
already initialised, and if it was then the initialisation was skipped.

fext I thought about how the speed of executing Submit files could be
speeded up, since they are so amazingly slow. If the $$$.SUB file was written to
the virtual disk instead of to a real disk, then the Submit overhead +ime ought
to vanish. This needed several changes, because the virtual disk would have to be
drive A, as I don't believe in modifying the BDOS. At the same time I didn't like
the idea of confusing myself by moving all the real drives up by one to B and C,
which was one suggestion. Programs like BACKUP and FORMAT would still refer +to
the real drives as A and B and I could imagine myself making some terrible
errors. Therefore I decided to flip drives A and P, so that the real drive A
would be called drive P and the virtual disk which was drive P would become drive
A. Also I allowed drive P to be called drive M in case people preferred that.

This all seemed a marvellous idea until I tried it. The system silently warm
booted up with drive A the virtual disk, but naturally there were no programs on
it, so I had to log in to drive P! The solution to this problem was to make drive
P the default logged in drive, so that on cold boot or after a drive select
error, the system would come up with the prompt "P>". A strange sight. Now I
really thought that I had solved the problem. But when I tried SUBMIT it didn't
work! Of course the reason was that SUBMIT writes the $$$.SUB file to the logged
in drive, and only executes $$8$.SUB if it is on drive A. Now I could see that I
was getting near to the answer. I had the source code of the excellent program
EXSUB, which I had debugged earlier, and it is designed to be easily modified to
force the writing of $$$.SUB to drive A regardless of the logged in drive.
Success at last - using SUB was now a pleasure, and the EXSUB facility of Ybeing
able to submit several commands without using a text editor to create a .SUB file
became more useful.

But the final benefit of making drive A the virtual disk came unexpectedly
with the use of CCPZ, which is a much improved CCP written in %80 code and
available from the CP/M Users Group. This CCP implements a very clever search for
programs which you try to execute. For example if you are logged in to drive P,
as user 4, and you try to execute a program, first it looks on drive P user 4. If
this fails it looks on drive P user O. If this fails then it looks on drive A
user 0. And of course this is now the virtual disk. So if you put programs on the
virtual disk then they will always run even if you type in the command while
logged in to another drive. CCPZ has lots of advantages, including making the
User number feature work sensibly, which is very useful particularly if you have
a hard disk. In fact Gemini have had the great good sense to supply it with the
MOVCPM for their Winchester system, instead of the standard CP/M CCP.

Several software products which make good use of disks to extend their
ability fto deal with large quantities of data benefit greatly from use with a
virtual disk. A good example is WORDSTAR, which may be used to edit a text file
of say 100K. It automatically reads and writes the file to disk so that a large

48

portion 1is in memory, but if you keep moving up and down the file the delays
become painful. But if the text file is on a virtual disk, then WORDSTAR
continues to be fast, even with vast files. Another example is the amazing VIZAPL
which is a full implementation of APL for microcomputers. It is available for the
Gemini IVC, which displays all the APL characters very beautifully. VIZAPL has
the amazing ability to extend real memory using its own virtual memory technique
to move little used data and procedures to disk. If the virtual workspace is put
on to the virtual disk, then the speed improvement with large APL workspaces is
very impressive. It is like having the memory addressing capability of a 16 bit
microcomputer, but on an 8 bit ZRO.

To summarise the advantages:-
(a) high performance exceeding that of any real disk, whether floppy or hard;
(1) no disk wear or noise in operation;
(c) ideal with CP/M if CCPZ used, and for SUBMIT operations if it is drive A;
(d) special benefits with some software such as WORDSTAR and VIZAPL.

And the disadvantages:-
(a) more expensive than real disks - but this is getting better;
() a power cut can be a disaster if you run for hours without backup;
(c) it can be boring moving files to and from the virtual disk.

S0 are virtual disks useless? No.

E.V.BEEPER — A MINI-REVIEW by RICHARD BEAL

e N L L Y. 7 VY VW VP

Recently I was using a conventional CP/M system (a Rair Black Box) and T
found that it had a feature that T wanted (apart from a hard disk). To be
accurate, the terminal had the feature, not the computer. It went BEEP. I hadn't
realised that various bits of CP/M software go BEEP to warn you of things, and of
course it is very easy to put

PRINT CHR$(7)

into a BASIC program. All yvou need is a beeper. I found that one already existed,
from E.V. COMPUTING ISD. I have a Gemini intelligent video card (IVC), and this
already supports a beeper by putting out a signal when it receives a Control/G
(O7H). The beeper detects this signal and goes BEEP. I ordered the beeper by
phone, wusing a credit card, and the beeper arrived all the way from Manchester
the next morning. Ten minutes later, with the help of very clear instructions, it
was working perfectly. I had a nasty fright when I turned the machine on, because
it went BEEP at once. In fact it now always goes BEEP whenever it is turned on or
off. The BEEP is really more like a choked warble, and the manual describes how
to modify the beeper to make it warble differently.

The instructions explain how it can also be used if you do not have an IVC,
using a signal from the Nascom keyboard port. This requires some extra sofiware
to be patched in, and this would need a bit of work by the user, but it is well
documented in the instructions.

I recommend this product, which works perfectly, for those who want a simple
beeper. It does not play music or sing, but it is very reasonably priced at
£12.50 plus VAT.

Queries to:-
E.V. COMPUTING LTD., 700 BURNAGE LANE, BURNAGE, MANCHESTER M19 1NA.
Tel. 061-431 4866

50

80-Bus + UCSD = Dynamite by Mike York

Introduction

A AN NSNS PG

References have Dbeen made in 80-Bus News (and its predecessor) to "UCSD" and in
the last issue of 1982, S. Monger mentioned that I had implemented it for the
Nascom then confessed not knowing what it is. Working on the assumpiion that many
other readers will not know what it is I am writing this short article to explain
the origins, subsequent development and current state of the UCSD p-system and
its implementation for 80-Bus computers. You may also find it worth your while to
read a series of three articles in PCW (July - September, 1982) and an article in
the first issue of Computer Answers (Nov/Dec 1982).

What is UCSD?

Many people know of UCSD Pascal. It was the first full-scale Pascal implemented
on micro-computers (and was adopted by Apple as "Apple Pascal"). The original
Pascal compiler was then wused +to develop a complete operating system for
microcomputers that is not just a rival to CP/M but contains many features which
CP/M users can only dream of. Subsequently other compilers (FORTRAN, BASIC, Lisp,
APL, Modula-2 and the new INMOS language Occam) have been added and the only
remaining attachment to Pascal is now historical (and the fact that the use of
Pascal naturally influenced that history).

I was first introduced to UCSD two years ago and was so impressed that, after a
year of uselessly wishing that someone would buy me some disk drives or sell an
automatic cassette deck with UCSD as its operating system, when I finally got my
disk drives, I decided to forget CP/M and go straight for UCSD on my Nascom and
have been actively using it now for nearly a year.

The major and, I believe, unique feature of the system is its use of "p-code" or
pseudo-code. P-code was originally specified as a pseudo-machine code to run on a
hypothetical stack-oriented processor. This was to facilitate the compilation of
Pascal in a single pass. (Subsequently a real microprocessor, the Western Digital
Microengine, was developed to run p-code as its native code.) This p-code is
subsequently executed by a p-code interpreter which is coded in the native code
of the microprocessor being used. This use, of p-code gives an incredible
portability to UCSD software. As long as a p-code interpreter exists, any program
compiled into p-code (incliuding the whole of the UCSD operating system) will run
on any microprocessor! Except in special circumstances, the same programs that
run under UCSD on an Apple, IBM PC, Sirius, Sage II, etc. will also run on a
Nascom or Gemini without change - and vice versa.

This sort of portability is impossible under CP/M without resorting to expensive
"Z80 cards". (And just look at the mess CP/M has got into in upgrading to 16-bit:
they have even had to produce their OWN Z80 card for the IBM PC %o allow users to
run their old software!)

Of course this portability has been bought at a price. P-code, Dbecause it 1is
interpreted, runs slower than native code. Supporters of CP/M-based Pascal
compilers have been quick to point out that the Pascal Benchmarks published in
PCW run quicker under 780 compilers than p-code compilers. Of course, the
importance of execution speed is tremendously exaggerated by these critics.
(During the 1last year I have not once been adversely affected by slow execution
of p-code.) However, even if it were important, such critics are now out of date.
There now exists a Native Code Generator which can translate a p~code program,
wholly or partly, into Z80 native code. The resultant code file can then be saved
and treated as any other p-code file = except that during execution, those
passages which are time-critical will now run at native code speed. With UCSD,

51

therefore, you have the choice. Either maintain portability (and more economical
use of memory) using p-code or speed up execution using native code. You can even
keep two versions of the program: one purely p-code and the other optimised for
speed.

There are, of course, other Thardware features, %besides the processor, which
affect portability. UCSD tackles this problem the same way as CP/M -- you have a
hardware-dependent BIOS especially written for the particular machine. However,
even here, UCSD have gone one better +han CP/M by simplifying the BIOS
considerably (and calling it the SBIOS - Simplified Basic Input Output System).
This is done, for instance, by standardising the Blocking/De-Blocking process in
a way that is transparant to the SBIOS writer. Other advances over CP/M include
the ability to redefine control characters to suit your console device, optional
input queuing (type ahead, etc.) and flagging of "events" +{o signal concurrent
processes, efc.

Mention of Concurrency brings me back to the compilers. UCSD is a multi~tasking
operating system. You can run programs which execute several concurrent processes
at once - switching between them as necessary. (It is not, however, a nulti-user
system -~ although it can support remote linking %o a host computer or
networking.)

Other powerful features that are normally available only on mainframes include
separate compilation of "Units", overlaying (swopping in and out of memory from
disk -- with all variables protected) of "Segments", the use of "Libraries" of
pre-compiled routines and the linking of routines from different compilers, or
assembler, into one program.

Besides these advanced operating features, the Pascal compiler, itself, has
several enhancements over the Jensen & Wirth specification and these enhancements
have been the model for most of the other Pascal compilers developed since for
CP/M. Most notable is the implementation of Random Access to disk files (1eft out
by Jensen & Wirth who dealt primarily with sequential files) by the new intrinsic
procedure "Seek" which enables reading and writing of random records in a file.

The only major feature of Jensen & Wirth (or the ISO standard) which is missing
is the ability to pass procedure identifiers as parameters -- but this is not
used very often anyway and is planned for future versions.

What does it do?

UCSD will ©be useful to system developers, applications programmers and business
users, and, if you have the hardware, graphics freaks. WNumber crunchers can
choose four-word reals {(instead of two) if they wish.

When you boot up you are presented with a prompt-line giving a menu of possible
commands. (This can be altered 1o produce a customised "turnkey" system if
desired.) These commands are implemented by a single key and the prompting system
is followed with each of those commands in a tree-structure.

When you buy CP/M you get an editor and an assembler thrown in. However, if you
have a 780 the the assembler is useless and unless you are dependent on an old
teletype terminal the editor will soon cause much gnashing of teeth and tearing
of hair. To get a reasonable screen editor and 780 assembler you could end up
paying several hundred pounds extra.

With UCSD you get a very powerful screen editor which doubles as a modest
word-processor, and a macro/conditional assembler (that compares favourably with
M80) thrown in as part of the standard package. A line-oriented editor for those
using teletype terminals is also included. If you want to download assembled

52

machine code onto a different processor then a Cross-Assembler package is an
extra. Printer spooling is also supported and a turtlegraphics package is
available. A special utility to read and write CP/M files is also available
enabling the fransfer of data and text files from one operating system to
another. This utility even goes one up on PIP by allowing you to reconfigure the
block size, disk capacity, directory length, etc. for different disks. (With PIP
you are stuck with the parameters specified in your BIOS.)

On the commercial side, UCSD still lags a little behind CP/M (in terms of the
amount of applications software available), but that situation is changing

rapidly.

Although originally developed for a university/educational environment, it was
commercial interest which 1led to the setting up of SoftTech Microsystems to
market the UCSD p-System. When implementations of UCSD for the Apple and
SuperBrain became available - the Apple adaptation, in particular, proving very
popularf(outselling even Visicalc) they were the motivation for a wide range of
business software. More recently, Sirius, IBM and Osborne have adopted UCSD. The
latest state-of-the-art business micro, the Sage II, based on the Motorola 68000
and streets ahead of the other 16-bit micros, has adopted UCSD as its favoured
operating system. In addition, many universities (including Oxford, Cardiff, Bath
and Edinburgh) run UCSD as their favoured environment for micros. The portability
and adaptability of the system means that it can run on even cheaper micros (e.g.
Nascom/Gemini) and the price advantage must surely make UCSD on these micros a
very attractive proposition.

A considerable amount of business software is now on the market (a brief list is
available from me if you send an SAE (get my address from my Ad.)) for UCsD,
including the most advanced accounting, modelling, word processing and database
packages. (Some of these have even received the unprecedented bouquet of approval
by IBM for their Displaywriter and Personal Computer.) Most of these packages
were originally developed on an Apple. They were thus designed fto run in limited
memory. The demand for them to run on IBM, Sirius, Sage, etc. has now required
that any hardware dependent features be removed and only the standard portable
I/0 facilities be used. There should, therefore, be no problems in running them
straight away on a Wascom with 64K and some may run in 48K.

Nascom Implementation

When I set about implementing UCSD on my Nascom I was unemployed and desperately
looking for some way to earn some pennies. From the beginning, therefore, I had
my eye on the possibility of making the system available for sale.

I was immediately faced with the prospect of lots of different 80-Bus compatible
disk controllers, video controllers, and printers, several different types of
drives and several different disk formats. Since I had 8" drives (which I got
cheap because they had been discontinued) I obviously had to write my own disk
drivers anyway and so I decided to write a new boot ROM which would contain the
drivers for virtually any mix of controllers, drives and formats. This is called
AllBoot and more information can be had by sending an SAE to me. (I decided not
to bother with the old Henelec controller which used the PIO and was thus too
limited and incompatible with the Gemini GM809 and Lucas Logic FDC to make it
worth my while. I have not yet looked at the new Gemini GM829 FDC/hard disk card
eitheﬁi Ed. - from a 5.25" point of view it is 100 per cent compatible with the
GM809

Now for the actual implementation: v

The version provided for, the WNascom (and planned for Gemini) will be an
implementation of the latest (version IV.1) 280 Adaptable System. This allows for
future extension of the SBIOS to accommodate a hard disk and provides a versatile

53

and comprehensive programming interface to the operating system to facilitate
sophisticated applications programs. The SBIOS for Nascom has been implemented
via AllBoot (mentioned above) that enables the disk drives to be configured under
software control. Thus almost any legal combination of 5" and 8" drives with
Nascom and Gemini(GM809) FDC cards and format (including the ability +o wuse 48
tpi formatted disks on 96 tpi drives) can be catered for and reconfigured, at
will, while the system is running. The system can be run (although with a couple
of 1inconveniences) using the normal Nascom 16%48 display. However facilities for
a Gemini IVC and/or serial console are provided as are "hooks" to enable a Lucas
Logic AVC, or other CRT or keyboard of the user's choice, to be used.

The printer can be software configured to use either the PIO (for a Centronics
type) or the UART (serial).

AliBoot sits at FOOO - F7FF and RAM is required from FCOO for the S5BIOS and P800
if WNascom video is used (can be changed on booting to any other address to which
the VRAM select is decoded). A minimum of 48K (60K is more suitable) RAM is
required below FOOO and at least one disk drive (two is more sensible) with at
least 175K.

The Gemini version will be essentially the same except that it will be totally
RAM based (and with about 1K extra RAM at the top end of the memory map), the
Gemini boot ROM paging out after 1loading, and +the Nascom video option will
obviously not be possible.

(Many thanks to Lucas Logic for their help with 5.25" disk drives, by the way,
and also to Dave Hunt at Henry's for patiently answering countless queries.)

User Group

About two years the UCSD p-System Users Society (USUS) was set up in the USA,
followed shortly by USUS{UK) over here. They have a large library of programs
(about 20 single density 8" disks' worth) in various formats available for the
cost of the media and copying.

They also organise two full-scale conferences (usually at a University) every
year and distribute a WNewsletter rather like this full of technical tips and
reviews of the latest aplications packages.

They can be contacted via:

Mark Woodman

Membership Secretary USUS(UK)
Mathematics Faculty

The Open University

Walton Hall

MILTON KEYNES

MK7 6AA

How to get it

T almost forgot (he said 1lying through his teeth) you can buy the Nascom
implementation (and soon Gemini/Galaxy/Quantum versions) from me, see my Ad. in
this mag. Alternatively hassle your Nascom/Gemini dealer and tell him/her to
order one thousand copies from me as soon as possible if they don't want to be
left out of the rush.

54

RANDOM RUMOURS (& TRUTHS) by S. Monger

Me again. And with 'not a 1lot' of new products %o reveal. All is
relatively quiet, although I think that there is a fair amount of behind-the-
scenes activity in certain quarters.

It seems that anybody looking for a video card will soon be faced with a
bewildering choice. In monochrome, for 80x25, there is the 'de facto' Gemini
GM812 IVC. This is now about to be joined by the MAP VFC, a combined 80x25 video
and 5.25" FDC card. It's good to see another company producing 80-BUS/Nasbus
compatible cards, but it is a shame that they are trying to reinvent +the wheel
instead of bringing along totally new boards. The majority of dealers feel that
this card is unlikely to break any sales records. As a video card it loses to
the IVC by having no PCG (programmable character generator), no on-board CPU
(for intelligence and secondary programming), only one screen format, no 1light
pen socket, and an unbuffered keyboard input socket (as an option). One also has
to consider that neither Nascom or Gemini are likely to include support for this
card in their CP/M or other operating systems, and nor is Richard Beal likely to
include it in his SYS BIOS program. Price of a 'video only' VFC is £110 against
the IVC at £125.

As a disk controller the MAP VFC is claimed to be 100% 5.25" compatibie
with the Gemini GM809 and GM829 cards, no doubt so that MAP can say that CP/M is
available (through Gemini) until the day they can afford their own Digital
Research licence. It does NOT however have 8" floppy and SASI hard disk support,
like the GM829, or an 8" option, like the GM809 and Nascom FDC. Thus at £115
'yer pays yer money and yer takes yer choice' against the Gemini GMS829 and
Nascom FDC at £145, or the soon to be discontinued GM809 at £125. (N.B. exchange
(second-hand & Gemini retested) GM809s will be available from MicroValue dealers
at £100 as/if people upgrade to GM829s.)

In fairness (wot, me fair?) to MAP, the card does make a little sense
when bought in its combined form at £199, or when bought as a kit, and it may
provide a desparately needed spare card slot, but the comments on software still
hold, and it is a shame that they haven't put their efforts into something else.

In colour the choices become bewildering. In order of cost there is the
Nascom AVC at £185 (10"x8", relatively slow, but with some excellent support
software for Nascoms), the Climax at £199 (super fast vector drawing, but only
Just about to actually become available), the Baby Pluto at £299, and Pluto at
£399 (very difficult to get hold of due to 'run-away success', also see Dr.
Dark's review).

Finishing off on my video topic, I will also throw in the rumours heard
that there will shortly(?) be available a low-cost colour card (circa £100)
ideal for games and simple animation, and also another (more expensive)
monochrome card, with more advanced graphics facilities than on the two current
cards.

Lucas/Nascom have recently had a dealer meeting where they handed out
pretty display cards. One advertised Nas-Net at 'only £39.95 per station'. Does
this mean I can have a 10 station networked gystem for less than £4007 I don't
think that is what they meant somehow!

Conspiracy? Why else are Lucas/Gemini/MAP/Quantum in consultation? Well,
look out for a new computer from one of these companies, that has the physical
appearance of a product from one of the other companies, and contains Dboards
from three of these companies. Puzzled? Well, there isn't anything revolutionary
to get excited over, other than the fact that these people are actually talking
to one another!!!

55

UCSD p-system for Nascom

The renowned UCSD p-system has now been adapted
for Nascom microcomputers . with virtuslly any
combination of Nascom or Gemini drives, 5" or

8".

A complete operating system, with screen editor,
macro assembler, optional Pascal, BASIC and
FORTRAN, Native Code Generator and Turtle-

Graphiecs, there is & comprehensive and highly
portable range of business and applications
software available and virtually complete soft-

ware compatibility with other computers running
UCSD == including Sirius, IBM, Apple and Sage.

Basic p-system (includes screen editor and macro
assembler & ALIBOOL) . ueesvncncsnoveasnnnees£225
Compilers:

PBSCAL.scessrssesvasvencasessasnassnancsesss bl
FORTRAN tsvsvsassonsnnsassansvssasssansseneesll9S
BASIC. . vsesvssasassvasnoncscncssnnnsacannsossbl2S
AllBoot (All-purpose boot ROM for Nascom)....E25

Add VAT € 15%.
Gemini/Galaxy/Quantum versions soon.

Large SAE to: Mike York, 9 Rosehill Road, LONDOH
SW18 2NY (Tel. 01 BTh 62kk) for further details,

NEW_FOR NASBUS/GEMI
The MAFP U.FQC. NI

80 Column x 25 line screens and Floepy disk
controller on a single 8' x B* professionally
buill rlud in card, Fully comratible with the
current rande of NASCOM and GEMINI eroducts.
FEATURES! 80 x 25 raded semory marred screen

Flicker free diselay

Standard ASCII character set

128 drarhic chars or inverse video

Onboard software

Video switch § keuboard port ortions

5 1/4" floepy disk controller
Avsilable serarately as kits or built boards,

VIDED CARD s £89 KIT £110 RUILT
FLOFPY CONTROLLERY £95 KIT £115 BUILT
VIDEQ & FLOFPY ¢ £165 KIT £199 RUILT
OFTION % EXPANSION KIT POA

We are pleased o announce that we are suerorting
our new VFC with 3 5 1/4* floepy disk drive sustem
usind 96 TPIy S5/DD Teac half heisht drivesy in a
slin vase conrlete with rower surrly and all cables.

SINGLE DRIVE SYSTEM (500Kb) £299 BUILT
DOUBLE DRIVE SYSTEM (1 Mb) £499 BUILT

256K RAM CARD-64K Ver £105 KIT £150 RYILT
{Exeandable to 256K - exransion kits PDA)

SOFTWARE - We can surprort most sustems
with CF/M software ~ Rind for detzils,

ALL PRICES EXCLUDE P3P (£1.50) % V.A.T,
MAP 80 SYSTEMS LTD.:»

333 GARRATT LANEsLONDON:
SW 18. Tel 01-874 2691

HENRY'S INCREDIBLE CP/M UTILITES DISK.

All the things you ever wanted: The Disk

cataloguing and file dating suites. File compare,
string and byte search utilities. ASCII file
compression and expansion programs. A new system

independant disk repair utility. A new SUBMIT with
fully interactive input. The revised DRI PIP.COM
including all the official fixes. And many more.
Almost all are standard CP/M utilities and will work

on any CP/M system. Supplied in either Nascom and
Gemini formats. The price of this gift 7 A mere
215.00 + VAT (217.50 + VAT in Gemini SD format as
it's too big te fit on one disk).
RICHARD BEAL'S NEW SYS BIOSes

SYSN7, the ultimate §YS$S for the original

Henelec/Gemini G805 CP/M disk system, suitable for

either CP/M 1.4 or 2.2, Nascom 48 column video or
Gemini IVC 80 column video.
8YSB15 Super 5YS for the Gemini computers

and Nascom/Gemini hybrid computers. Compatible with
the Gemini GM809 controller card and the new Gemini

GM829 SASI controller card. When used with the
GM809, support for Shugart compatible and other
5.25" drives. Also GMB29 support for 8" and the

Gemini GM835 Winnie as well (Winnie drivers only
supplied on providing evidence of owning a GM835).

Support is now provided for using Geminil 64K
or Nascom 48K page mode RAM cards (maximum 128K) or
the MAP80 Systems 256K RAM card (maximum 1M Byte) as
a virtual disk.

Provides all the goodies of the previous
S¥Ses and lots more. When used with 48 t.p.i.
drives, gives limited read/write compatibility with
Super Brain ¢D and DD formats, Rair, Cromenco, BML
and Xerox formats, and copying facilities to/from
Osbourne. And, of course, the original Gemini/SD

HENRYS

Phone 01-402 6822

DIVISION

COMPUTERKIT H E N R Y.S RA DI O

404, Edgware Road, London W2 1ED.

compatible format. A superb plece of software, ask
anyone who uses it.
Supplied as a full source 1listing for the

Microsoft M80 V3,44 (or later) assembler. Please
supply vour full system configuration if you regquire
SYS ready assembled for wuse. As this is support
software, it's Richard's (and our) opinion that the
price should be as low as possible, so it's 210.00 +
VAT. Upgrades from earlier SYSes £5.00 + VAT (return
the original disk).

NEW SUPER DISKPEN

DISKPEN has been rewritten and revised. This
popular text editor/formatter now includes a 'HELP®
facility, and new features for the print control of
most popular printers, underline, bold, etc, (also
user patchable for the less popular types). New
features include block delete, better move commands,
new cursor control, optional hyphenation, visible
indentation (margin) setting and lots more. A major
enhancement is the ability to handle overlay files
so that Pen can use auxilliary packages such as the
multi-column formatter (that printed this). Details
on writing your own overlays is provided for the
machine code programmer, allowing the user to write
special versions for special purposes.

The new DISKPEN is suitable for wuse with
Hascom/Gemini hybrids (using the Gemini GM812 IVC
card), and all Gemini computers, and is available as
a X15.00 + VAT upgrade (return your original disk)
or to new purchasers at 245.00 + VAT {please supply
your CP/M serial number). Versions of DISKPEN will
shortly be available for the Mimi G801 and GBOZ
also Super Brain.

and

DRH 830114

Telephone orders welcome

GHM811
GM813
GHB12
GHB802K
GMB02
GHMBO9
GMB29
LUCAS LOGIC
GMBO3K
GMB16
EV8l4
RB3ZKC
10824
PLUTO

BABY PLUTO
cCesy

NAS AVC

WAS If0
GMB10
GMBO6AK

GM825~18
GMB25~28
LUCAS LOGIC
LUCAS LOGIC
GM835

GM512

GM532

GM513

LUCUS LOGIC
GH515

GM516

GM533

GM534

LUCUS LOGIC
LEVEL 9

IUAVT
127pl2
12%M12

EPSON
HI80T/3
MXBOFT/3
MX100T/3
HEC

PTB023BC Dot/Mat/Tractor

SHMITH CORONA
TP1

80~BUS HARDWARE

ZBOA CPU Board 2125.00
Z80A CPU + 64K RAM Board £225.00
Z80A Video Controller Board 2125.00
16KRAM Kit (64K Board) z 80.00
64K Dynamic RAM Board £125,00
Floppy Disk Controller 2125.00
FDC/SASI Controller 2145.00
Floppy Disk Controller 2145.00
Eprom/Rom Board (Kit) £ 55.00
1/0 Board (RTC CTC 3%PIO0) 212500
IEEE 488 Controller Beard £140.00
32K Cmos Batt/Backed RAM £170.00
8ch - 8bit A/D Board £120.00
High Res Colour Graphics

board, 2 Screen Memorie

(640n*288v) 3 bit Pixels 339,00
(320n*288v) 3 bit Pixels £299.00
Colour Graphics Board,

(256%256)16 colour pixel (PAL)2199.00

display. (PAL + RGB)¥220.00
Colour Graphics Board 80col

(320n%256v) Pixels £185.00
I/0 Xit Not Populated 2 45.00
8 Slot Motherboard SA PSU 2 69.50
Nascom buffer+mother board ® 49.50
DISK SYSTEMS

Single Drive Disk Unit 2350.00
Double Drive Disk Unit £575.00
Single Drive Unit (inc FDC) 2470.00
Double Drive Unit (inc FDC) £685.00

5.4 Meg Winchester Sub~System £1450.00

DISK OPERATING SYSTEMS

CP/M for Multiboard & GM81S X 90.00
CP/M for Multiboard & GM825 X 90.00
CP/M for Nascom & GMB09/GM815 2100.00
CP/M for LUCUS Disk System 2100.00
POLYDOS 1 for Nascom & GM805 £ 90.00
POLYDOS 2 for Nascom & GMB15 £ 90.00
POLYDOS 3 for Nascom & Lucas ¥ 90,00

POLYDOS 4 for Nascom & GM825 X 90,00

NASDOS for Nascom & Lucas £ 60.00

Q-D0S for Nascom & GHM805 % 40,00

MONITORS

High Res, Green or Amber 2 99,00

High Res, Green or Amber £110.00

Metal cased, 90 Deg,High Res £150.00

COLOUR MONITORS Please ring for details

PRINTERS

Dot /Mat/Tractor 349,00

Dot /Mat/Friction/Trac £389,00

132col (as above) 2499.00
¥215.00

Daisywheel/12cps 2485.00

NASCOM SOFTWARE TAPES

LEVEL 9 Extension Basic Tape
CCsoft Nas~Graphpac Tape
NASCOM Pascal Compiler Tape
SIGMA Zeap 2.0 Assembler Tape
GEMINI Nas-Dis/Debug Tape
L-Soft Logic soft Relocator Tape
MATHS PACKS Mike's Basic Expander
- Double Precision Package

Program Handler

LEVEL 9 NASCOM GAMES TAPES
5 GAMES (Gunner /Wumpus etc)
Missile Defence
Asteroids
Space Invasion
Bomber
Fantasy
Nightmare Pork
Colossal Adventure (32K)
Adventure (Quest (16K)

Galaxy Invaders
Life

Super Gulp (requires 32K & Extension Basic)

NASCOM FIRMWARE

LEVEL 9 Extension Basic (4%2708)

NASCOM Pascal Compiler

GEMINI Naspen Text Editor

GEMINI Nas-Sys 3 (2708/Nascom 1)

GEMINT Nas-Sys 3 (2716/Nascom 2)

GEMINI Imprint {For Imp Printer)

BITS & PC's Programmers Aid (N/Sysl)

BITS & PC's DProgrammers Aid (N/S5ys3)
GEMINI RPM/CPM SOFIVWARE

MICROSOFT Basic Interpreter

COMAL 80 Structured Basic

*GEM PEN Text Editor / Formatter

*GEM ZAP Assembler (screen editing)

*GEM DEBUG Debug/Disassembler

COPY S$B Superbrain to Gemini (DDDS)

LIST/REPAIR Recovers Lost Data Etc

DATAFLOW Information Processor

*G BASIC Graphics Basic (IVC)

GEM GRAPHPAC Links to Mbasic (IVC)
COM=PAS Pascal Generates M/Code
*Tape also available.

15.00
20.00
45,00
20.00
20,00
13.00

9.95
13.00

9.95

LR R R K.

ot
MW s O WO~ o
. v e w .

»

. .

. .

B b o B o B B b fs f e
O\O\O\OOO‘
558888888888

25.00
75.00
20.00
20.00
20,00
20.00
20.00
20.00

B B by P b P b By

£195.00
£100.00
2 43.00
£ 45.00
 30.00
£ 30.00
£ 25.00
£125.00
£ 25,00
£ 35,00
£120.00

When ordering disks please specify the format,

WE ARE OPEN MONDAY TO SATURDAY 9-5.30. PERSCNAL CALLERS WELCOME.

AMERSHAM COMPUTER CENTRE LTD.

ORDERS ACCEPTED BY MAIL AND PHONE,
AXESS AND VISA CARD HOLDERS WELOOME.

18, WOODSIDE ROAD, AMERSHAM, BUCKS. HP7 OBH

Telephone: 02403 22307 Telex: 837788

Prices subject to the addition of relavant VAT charge + par

MEDIA .

EACH BOX 10

SCOTCH Cl0 Cassettes £ .60 X 6.00

SCOTCH C30 Cassettes x .70 £ 7.00

DYSAN 1042D D/S disk 25,00 2 43,00

DYSAN 1041D S/S disk 24,75 X 40,00
80-BUS SYSTEMS

QUANTUM QM 2000 System (2.4M Bytes) 22250.00

< GM903 GALAXY 2 System,2 Drives 21495.00

GM904 GALAXY 2 System,1 Drive 21275.00

GM905 GALAXY 2/2 drives(1.6M Bytes) %1695,00

NASCOM 3 48K with Nas Sys 3 & Graphics X 549.00

NASCOM 2 Built & Tested (No user ram) X 285.00

